Skip to main content
Log in

The effect of manganese-induced hypercholesterolemia on learning in rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Since the exact mechanism of manganese (Mn)-induced learning disability is not known, we investigated the role of elevated cholesterol in rats exposed daily to 357 and 714 μg Mn/kg for 30 d. Significant Mn accumulation was accompanied by increased cholesterol content in the hippocampal region of Mn-treated rats. The learning, which is based on the time needed to reach food placed at the exit of a T-maze after a 1-d training period, was significantly slower in exposed rats than in unexposed rats. The rats receiving 357 and 714 μg Mn/kg reached the food in 104.5±13.8 and 113.3±25.7 s, respectively, on d 30, whereas their untreated counterparts reached the food in 28.7±11.4 s. This delay was completely corrected to 29.3±7.8 and 30.7±6.0 s in rats with coadministration of an inhibitor of cholesterol biosynthesis with 357 and 714 μg/kg of Mn. The correction of impaired learning was associated with the normalization of hippocampal cholesterol, but the Mn level in this region of the brain was not influenced in rats treated with a drug that inhibits cholesterol biosynthesis. These results suggested that Mn-induced hypercholesterolemia is involved in Mn-dependent learning disability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Fahim, N. Y. Morcoc, and A. Y. Esmat, Effects of dietary magnesium and/or manganese variables on the growth rate and metabolism of mice.Ann. Nutr. Metab. 34, 183–192 (1990).

    PubMed  CAS  Google Scholar 

  2. W. C. Cooper, The health implications of increased manganese in the environment resulting from combustion of fuel additives: A review of the literature.J. Toxicol. Environ. Health. 14, 23–26 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. J. Cawte, Environmental manganese toxicity.Med J. Australia 154, 291, 292 (1991).

    PubMed  CAS  Google Scholar 

  4. J. C. Donaldson, The phsiopathologic significance of manganese in brain. Its relation to schizophrenia and neurodegenerative disorders.Neurotoxicology 8, 451–462 (1987).

    PubMed  CAS  Google Scholar 

  5. R. A. Jacob, Trace elements, inTextbook of Clinical Chemistry, N. N. Tietz, ed., Saunders, Philadelphia, pp. 965–996 (1986).

    Google Scholar 

  6. M. S. Hua and C. C. Huang, Chronic occupational exposure to manganese and neurobehavioral function.J. Clin. Exp. Neuropyschol. 13, 495–507 (1991).

    CAS  Google Scholar 

  7. P. J. Collipp, S. Y. Chen, and S. Maitinsky, Manganese in infant formulas and learning disability.Ann. Nutr. Metab. 27, 488–494 (1983).

    PubMed  CAS  Google Scholar 

  8. J. Kawano, D. M. Ney, C. L. Keen, and B. O. Schneoman, Altered high density lipoprotein composition in manganese deficient Sprague-Dawley and Wistar rats.J. Nutr. 17, 902–906 (1987).

    Google Scholar 

  9. K. J. Jenkins and J. K. G. Kramer, Effect of dietary manganese on lipid composition of calf blood plasma, heart, and liver.J. Dairy Sci. 74, 3944–3948 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. D. J. Klimis-Tavantzis, P. M. Kris-Etherton, and R. M. Leach, The effect of dietary manganese deficiency on cholesterol and lipid metabolism in the estrogen-trated chicken and laying hen.J. Nutr. 113, 320–327 (1983).

    PubMed  CAS  Google Scholar 

  11. R. C. Murty, S. Lal, D. K. Saxena, G. S. Shukla, M. M. Ali, and S. V. Chandra, Effects of manganese and copper interaction on behaviour and biogenic amines in rats fed a 10% casein diet.Chem. Biol. Interact. 37, 299–308 (1981).

    Article  Google Scholar 

  12. G. Öner, F. Kizilirmak, and Ü. K. Şentürk, The effect of cholesterol on learning ability of rats.Tr. J. Med. Sci. 16, 145–149 (1992).

    Google Scholar 

  13. P. Yargiçoġlu, A. Aĝar, Y. Oĝuz, and G. Öner, The effect of hypercholesterolemia on SEPs recorded from rats.Intern. J. Neurosci. 61, 93–99 (1991).

    Google Scholar 

  14. A. Aĝar, P. Yargiçoġlu, Ü. K. Şentürk, and G. Öner, The role of diet cholesterol changes on EEG.Intern. J. Neurosci. 75, 103–109 (1994).

    Google Scholar 

  15. P. Yargiçoġlu, A. Aĝar, A. Taymaz, Y. Oĝuz, and G. Öner, SEP spectral analysis of cholesterol rich rats.Intern. J. Neurosci. 68, 273–281 (1993).

    Article  Google Scholar 

  16. A. R. Kessler, B. Kessler, and S. Yehuda, In vivo modulation of brain cholesterol level and learning performance by a novel plant lipid: Indication for interactions between hippocampalcortical cholesterol and learning.Life Sci. 38, 1185–1192, (1986).

    Article  PubMed  CAS  Google Scholar 

  17. A. R. Kessler and S. Yehuda, Learning-induced changes in brain membrane cholesterol and fluidity: implications for brain aging.Int. J. Neurosci. 28, 73–82 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. S. Yehuda, Nutrients, brain biochemistry, and behaviour: A possible role for the neuronal membrane.Intern. J. Neurosci. 35, 21–36 (1987).

    Article  CAS  Google Scholar 

  19. C. D. Berdainer, role of membrane lipids in metabolic regulation.Nutr. Rev. Int. 46, 1013–1021 (1988).

    Google Scholar 

  20. M. Shinitzky, Patterns of lipid changes in membranes of the aged brain.Gerontology 33, 149–154 (1987).

    Article  PubMed  CAS  Google Scholar 

  21. R. G. Banta and W. R. Markesbery, Elevated manganese levels associated with dementia and extrapyramidal signs.Neurology 27, 213–216 (1977).

    PubMed  CAS  Google Scholar 

  22. S. Magour, H. Maser, and I. Steffen, Effect of daily oral intake of manganese on free polysomal protein synthesis of rat brain.Acta Pharmacol. Toxicol. 53, 88–91 (1983).

    Article  CAS  Google Scholar 

  23. P. J. Barlow, A pilot study on the metal levels in the hair of hyperactive children.Med. Hypotheses 11, 309–318 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. D. L. Alkon, D. G. Amaral, M. F. Bear, J. Black, T. J. Carew, N. J. Cohen, J. F. Disterhoft, H. Eichenbaum, S. Golski, L. K. Gorman, G. Lynch, B. L. McNaughton, M. Mishkin, J. R. Moyer Jr., J. L. Olds, D. S. Olton, T. Otto, L. R. Squire, U. Staubli, L. T. Thompson, and C. Wible, Learning and memory,Brain Res. Rev. 16, 193–220 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şentürk, Ü.K., Öneŕ, G. The effect of manganese-induced hypercholesterolemia on learning in rats. Biol Trace Elem Res 51, 249–257 (1996). https://doi.org/10.1007/BF02784079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784079

Index Entries

Navigation