Skip to main content
Log in

Kinetics of water loss and the likelihood of intracellular freezing in mouse ova

Influence of the method of calculating the temperature dependence of water permeability

  • Original Articles
  • Published:
Cell Biophysics Aims and scope Submit manuscript

Abstract

To avoid intracellular freezing and its usually lethal consequences, cells must lose their freezable water before reaching their ice-nucleation temperature. One major factor determining the rate of water loss in the temperature dependence of the water permeability,L p (hydraulic conductivity). Because of the paucity of water permeability measurements at subzero temperatures, that temperature dependence has usually been extrapolated from above-zero measurements. The extrapolation has often been based on an exponential dependence ofL p on temperature. This paper compares the kinetics of water loss based on that extrapolation with that based on an Arrhenius relation betweenL p and temperature, and finds substantial differences below −20 to −25°C. Since the ice-nucleation temperature of mouse ova in the cryoprotectants DMSO and glycerol is usually below −30°C, the Arrhenius form of the water-loss equation was used to compute the extent of supercooling in ova cooled at rates between 1 and 8°C/min and the consequent likelihood of intracellular freezing. The predicted likelihood agrees well with that previously observed. The water-loss equation was also used to compute the volumes of ova as a function of cooling rate and temperature. The computed cell volumes agree qualitatively with previously observed volumes, but differ quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazur, P. (1965),Ann. NY Acad. Sci. 125, 658.

    Article  PubMed  CAS  Google Scholar 

  2. Mazur, P. (1963),J. Gen. Physiol. 47, 347.

    Article  PubMed  CAS  Google Scholar 

  3. McCutcheon, M., and Lucké, B. (1932),J. Cell. Comp. Physiol. 2, 11.

    Article  CAS  Google Scholar 

  4. Jacobs, M. H., Glassman, H. N., and Parpart, A. K. (1935),J. Cell. Comp. Physiol. 7, 197.

    Article  Google Scholar 

  5. Scheiwe, M. W., and Körber, C. (1983),Cryobiology 20, 257.

    Article  PubMed  CAS  Google Scholar 

  6. Fahy, G. M. (1981),Cryobiology 18, 473.

    Article  PubMed  CAS  Google Scholar 

  7. Korn, G. A., and Korn, T. M. (1961),Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York.

    Google Scholar 

  8. Leibo, S. P. (1980),J. Membrane Biol. 53, 179.

    Article  CAS  Google Scholar 

  9. Rall, W. F. (1979), Physical-Chemical Aspects of Cryoprotection of Human Erythrocytes and Mouse Embryos. PhD Thesis, University of Tennessee.

  10. Papanek, T. H. (1978), The Water Permeability of the Human Erythrocyte in the Temperature Range +25°C to −10°C. PhD Thesis, MIT, January 1978.

  11. Rule, G. S., Law, P., Kruuv, J., and Lepock, J. R. (1980),J. Cell Physiol. 103, 407.

    Article  PubMed  CAS  Google Scholar 

  12. Terwilliger, T. C., and Solomon, A. K. (1981),J. Gen Physiol. 77, 549.

    Article  PubMed  CAS  Google Scholar 

  13. Levin, R. L. (1979),J. Memb. Biol. 46, 91.

    Article  CAS  Google Scholar 

  14. Ushiyama, M., and Cravalho, E. G. (1979),J. Membrane Biol. 46, 112.

    Google Scholar 

  15. Jackowski, S., Leibo, S. P., and Mazur, P. (1980),J. Exp. Zool. 212, 329.

    Article  CAS  Google Scholar 

  16. Mazur, P. (1977),Cryobiology 14, 251.

    Article  PubMed  CAS  Google Scholar 

  17. Rall, W. F., Mazur, P., and McGrath, J. J. (1983),Biophys. J. 41, 1.

    Article  PubMed  CAS  Google Scholar 

  18. George, M. F., Becwar, M. R., and Burke, M. J. (1982),Cryobiology 19, 628.

    Article  PubMed  CAS  Google Scholar 

  19. Dowgert, M. F., and Steponkus, P. L. (1983),Plant Physiol. 72, 978.

    PubMed  Google Scholar 

  20. Leibo, S. P., McGrath, J. J., and Cravalho, E. G. (1978),Cryobiology 15, 257.

    Article  PubMed  CAS  Google Scholar 

  21. Mazur, P., and Rigopoulos, N. (1983),Cryobiology 20, 274.

    Article  PubMed  CAS  Google Scholar 

  22. Leibo, S. P. (1977), Fundamental cryobiology of mouse ova and embryos, inThe Freezing of Mammalian Embryos, Ciba Foundation Symposium 52 (New Series), Elsevier, Netherlands, pp. 69.

    Google Scholar 

  23. Wood, T. H., and Rosenberg, A. M. (1957),Biochim. Biophys. Acta 25, 78.

    Article  PubMed  CAS  Google Scholar 

  24. Souzu, H., Nei, T., and Bito, M. (1961),Low Temp. Sci. B19, 49.

    Google Scholar 

  25. Mazur, P. (1980),Origins of Life 10, 137.

    Article  PubMed  CAS  Google Scholar 

  26. Lehn-Jensen, H., and Rall, W. F. (1983),Theriogenology 19, 263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazur, P., Rall, W.F. & Leibo, S.P. Kinetics of water loss and the likelihood of intracellular freezing in mouse ova. Cell Biophysics 6, 197–213 (1984). https://doi.org/10.1007/BF02788619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788619

Index Entries

Navigation