Skip to main content
Log in

Expression of the antioxidant geneNKEF in the central nervous system

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Free radicals and the oxidative stress they impose can cause serious injury in the nervous system and contribute to pathology associated with a wide variety of degenerative and traumatic disorders. In this study, we examined the expression of an antioxidant defense gene,nkef, in human tissue and isolated populations of rat brain cells using Western and Northern blot analysis. NKEF protein was expressed in human brain, liver, kidney, muscle, and lung. The human endothelial cell line ECV expressed a 25-kDa band in addition to the 22-kDa band normally observed. In the central nervous system, a 22-kDa NKEF band was present in cortical gray and white matter, hippocampus, cerebellum, and spinal cord in roughly similar amounts. Expression of NKEF-A and NKEF-B subtypes was evaluated by Northern analysis of cultured cell types from embryonic rat brain. Astrocyte and microglia expressed both 22- and 25-kDa bands, whereas cortical neurons and oligodendrocytes contained only the 22-kDa protein band. Northern blot analysis of these cell types revealed low levels of NKEF-A message in neurons and oligodendrocytes, and relatively low levels of NKEF-B in microglia. Differential expression of these antioxidant defense genes may contribute to the selective vulnerability of brain cell types to specific kinds of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birnbaum G. (1995) Stress proteins: their role in the normal central nervous system and in disease states, especially multiple sclerosis.Springer Semin. Immunopathol. 17(1), 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Boje K. M. and Arora P. K. (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death.Brain Res. 587, 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Bowling A. C. and Beal M. F. (1995) Bioenergetic and oxidative stress in neurodegenerative diseases.Life Sci. 56, 1151–1171.

    Article  PubMed  CAS  Google Scholar 

  • Cachianes G., No C., Weber B. F., Williams S. R., Goeddel D. V., and Leung D. W. (1993) Epstein-Barr virus-derived vectors for transient and stable expression of recombinant proteins.Biotechniques 15(2), 255–259.

    PubMed  CAS  Google Scholar 

  • Chao C. C., Hu S., and Peterson P. K. (1995) Glia, cytokines, and neurotoxicity.Crit. Rev. Neurobiol. 9(2–3), 189–205.

    PubMed  CAS  Google Scholar 

  • Cole R. and de Vellis J. (1989) Preparation of astrocyte and oligodendrocyte cultures from primary rat glial cultures, inA Dissection and Tissue Culture Manual of the Nervous System (Shahar A., de Vellis J., Vernadakis A., and Haber B., eds.), pp. 121–134, Alan R. Liss, New York.

    Google Scholar 

  • Desagher S., Glowinski J., and Premont J. (1996) Astrocytes protect neurons from hydrogen peroxide toxicity.J. Neurosci. 16, 2553–2562.

    PubMed  CAS  Google Scholar 

  • Grigorian B., Ling A., Kim A., Shau H., and Sarafian T. (1997) Protection of cellular energy production pathways by human natural killer enhancing factor B.Biochim. Biophys Acta, submitted.

  • Ichimiya S., Davis J. G., O'Rourke D. M., Katsumata M., and Greene M. I. (1997) Murine thioredoxin peroxidase delays neuronal apoptosis and is expressed in areas of the brain most susceptible to hypoxic and ischemic injury.DNA Cell Biol. 16, 311–321.

    Article  PubMed  CAS  Google Scholar 

  • Juurlink B. H. (1997) Response of glial cells to ischemia: roles of reactive oxygen species and glutathione.Neurosci. Biobehav. Rev. 21, 151–166.

    Article  PubMed  CAS  Google Scholar 

  • Kim A. T., Sarafian T. A., and Shau H. (1997) Characterization of antioxidant properties of natural killer enhancing factor-B and induction of its expression by hydrogen peroxide.Toxicol. Appl. Pharmacol. 147, 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S. and de Vellis J. (1981) Induction of lactate dehydrogenase by dibutyryl cAMP in primary cultures of central nervous tissue is an oligodendrocyte marker.Dev. Brain Res. 1, 303–307.

    Article  CAS  Google Scholar 

  • Lazo J. S., Kondo Y., Dellapiazza D., Michalska A. E., Chou K. H., and Pitt B. R. (1995) Enhanced sensitivity to oxidative stress in cultured embryonic cells from transgenic mice deficient in metallothionein I and II genes.J. Biol. Chem. 270, 5506–5510.

    Article  PubMed  CAS  Google Scholar 

  • Lim Y. S., Cha M. K., Kim H. K., and Kim I. H. (1994) The thiol-specific antioxidant protein from human brain: gene cloning and analysis of conserved cysteine regions.Gene 140, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy K. D. and de Vellis J. (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue.J. Cell Biol. 85, 890–902.

    Article  PubMed  CAS  Google Scholar 

  • McDuffee A. T., Senisterra G., Huntley S., Lepock J. R., Sekhar K. R., Meredith M. J., et al. (1997) Proteins containing non-native disulfide bonds generated by oxidative stress can act as signals for the induction of the heat shock response.J. Cell Physiol. 171, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Mitrovic B., Ignarro L. J., Vinters H. V., Akers M. A., Schmid I., Uittenbogaart C., et al. (1995) Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes.Neuroscience 65, 531–539.

    Article  PubMed  CAS  Google Scholar 

  • Netto L. E. S., Chae H. Z., Kang S. W., Rhee S. G., and Stadtman E. R. (1996) Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity.J. Biol. Chem. 271, 15,315–15,321.

    CAS  Google Scholar 

  • Pinteaux E., Coplin J. C., Ledig M., and Tholey G. (1996) Modulation of oxygen-radical-scavenging enzymes by oxidative stress in primary cultures of rat astroglial cells.Dev. Neurosci. 18, 397–404.

    Article  PubMed  CAS  Google Scholar 

  • Rhee S. G., Kim K. H., Chae H. Z., Yim M. B., Uchida K., Netto L. E., et al. (1994) Antioxidant defense mechanisms: a new thiol-specific antioxidant enzyme.Ann. NY Acad. Sci. 738, 86–92.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian T. A., Vartavarian L., Kane D. J., Bredesen D. E., and Verity M. A. (1994) bcl-2 Expression decreases methyl-induced free-radical generation and cell killing in a neural cell line.Toxicol. Lett. 74, 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian T. A., Rajper N., Grigorian B., Kim A., and Shau H. (1996) Cellular antioxidant properties of human natural killer enhancing factor B.Free Radical Res. 26, 281–289.

    Google Scholar 

  • Sauri H., Butterfield L., Kim A., and Shau H. (1995) Antioxidant function of recombinant human natural killer enhancing factor.Biochem. Biophys. Res. Commun. 208, 964–969.

    Article  PubMed  CAS  Google Scholar 

  • Shau H., Gupta R., and Golub S. (1993) Identification of a natural killer enhancing factor from human erythroid cells.Cell Immunol. 147, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Shau H. and Kim A. (1994) Identification of natural killer enhancing factor as a major antioxidant in human red blood cells.Biochem. Biophys. Res. Commun. 199, 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Shau H., Butterfield L. H., Chiu R., and Kim A. (1994) Cloning and sequence analysis of candidate human natural killer-enhancing factor genes.Immunogenetics 40, 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Shau H., Kim A. T., Hedrick C. C., Lusis A. J., Tompkins C., Finney A., et al. (1997) Endogenous natural killer enhancing factor-B increases cellular resistance to oxidative stresses.Free Radical Biol. Med. 22, 497–507.

    Article  CAS  Google Scholar 

  • Siow R. C., Ishii T., Sato H., Taketani S., Leake D. S., Sweiry J. H., et al. (1995) Induction of the antioxidant stress proteins heme oxygenase-1 and MSP23 by stress agents and oxidized LDL in cultured vascular smooth muscle cells.FEBS Lett. 368, 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia L. A., Storz G., Brodsky M. H., Lai A., and Ames B. N. (1990) Alkyl hydroperoxidase reductase fromSalmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases.J. Biol. Chem. 265, 10,535–10,540.

    CAS  Google Scholar 

  • Wong G. H., Kaspar A. L., and Vehar G. (1996) Tumor necrosis factor and lymphotoxin: protection against oxidative stress through induction of MnSOD.Experientia 77, 321–333.

    CAS  Google Scholar 

  • Yim M. B., Chae H. Z., Rhee S. G., Chock P. B., and Stadtman E. R. (1994) On the protective mechanism of the thiol-specific antioxidant enzyme against the oxidative damage of biomacromolecules.J. Biol. Chem. 269, 1621–1626.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarafian, T.A., Huang, C., Kim, A. et al. Expression of the antioxidant geneNKEF in the central nervous system. Molecular and Chemical Neuropathology 34, 39–51 (1998). https://doi.org/10.1007/BF02815135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815135

Index Entries

Navigation