Skip to main content
Log in

Nonsteady plane-strain ideal forming without elastic dead-zone

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was made under the plane-strain condition. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, schemes to optimize preform shapes for a prescribed final part shape and also to define the evolution of shapes and frictionless boundary tractions were developed. Discussions include numerical calculations made for a real automotive part under forging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Richmond and M. L. Devenpeck,Proc. 4 th U.S. Natn. Cong. Appl. Mech., 1053 (1962).

  2. O. Richmond and H. L. Morrison,J. Mech. Phys. Solids,15, 195 (1967).

    Article  Google Scholar 

  3. O. Richmond,Mechanics of Solid State, Univ. of Toronto Press, 154 (1968).

  4. R. Hill,J. Mech. Phys. Solids,15, 223 (1967).

    Article  Google Scholar 

  5. H. A. Wienecke and O. Richmond,J. Appl. Mech., (accepted).

  6. K. Chung and O. Richmond,J. Appl. Mech.,61, 176 (1994).

    Article  Google Scholar 

  7. K. Chung and O. Richmond,Int. J. Plasticity,9, 907 (1993).

    Article  Google Scholar 

  8. K. Chung and O. Richmond,Int. J. Mech. Sci.,34, 617 (1992).

    Article  Google Scholar 

  9. F. Barlat, K. Chung, and O. Richmond,Metallurgical and Materials Trans.,25A, 1209 (1994).

    Article  CAS  Google Scholar 

  10. K. Chung, F. Barlat, J. C. Brem, D. J. Lege, and O. Richmond,Int. J. Mech. Sci.,39, 105 (1997).

    Article  Google Scholar 

  11. O. Richmond and K. Chung,Int. J. Mech. Sci.,42, 2455 (2000).

    Article  Google Scholar 

  12. K. Chung, J. W. Yoon, and O. Richmond,Int. J. Plasticity,16, 595 (2000).

    Article  CAS  Google Scholar 

  13. A. Nadai, “Theory of Flow and Fracture of Solids”, Vol. 2, pp.96, McGraw-Hill, New York, 1963.

    Google Scholar 

  14. R. Hill,J. Mech. Phys. Solids,34, 511 (1986).

    Article  Google Scholar 

  15. K. Chung and O. Richmond,Int. J. Mech. Sci.,34, 575 (1992).

    Article  Google Scholar 

  16. O. Richmond and S. Alexandrov,J. Mech. Phys. Solids,48, 1735 (2000).

    Article  Google Scholar 

  17. K. Chung, W. Lee, and W. R. Yu,J. Korean Fiber Soc.,39, 407 (2002).

    Google Scholar 

  18. K. Chung, W. Lee, and O. Richmond,Int. J. Plasticity, (submitted).

  19. S. Alexandrov, private communication, (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwansoo Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, K., Lee, W., Kang, T.J. et al. Nonsteady plane-strain ideal forming without elastic dead-zone. Fibers Polym 3, 120–127 (2002). https://doi.org/10.1007/BF02892628

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02892628

Keywords

Navigation