Skip to main content
Log in

Audio interfaces and signal processing

Interfaces et traitements sonores

  • Published:
Annales Des Télécommunications Aims and scope Submit manuscript

Résumé

On traite dans cet article des problèmes liés aux interfaces de prise et à la restitution du son dans les télécommunications inter-personnelles et de groupe et aux traitements situés à ces interfaces. Ces problèmes qui se posent dans toute chaîne de communication par le son et la parole sont exposées brièvement dans I’introduction. Puis on aborde le domaine du débruitage et de l’annulation d’écho acoustique; un panorama des techniques actuelles est presenté. Le problème de la restitution du son respectant les caractéristiques de spatialisation acoustique est ensuite analysé et différentes solutions discutées à la lumieère des connaissances récentes en psycho-acoustique. La conclusion rappelle des données actuelles sur la normalisation et esquisse des pistes vers de futures applications.

Abstract

This paper deals with problems raised by speech and sound pick-up, processing and reproduction in telecommunication systems. Those problems which occur as soon as sound and speech are involved in a communication are briefly explained in the introduction. Then the noise and acoustic echo cancellation problems are discussed and current techniques are presented. The remaining part of the paper is dedicated to sound reproduction techniques which aim at preserving the spatial characteristics of sound and which take into account the characteristics of spatial hearing. Finally, some data about standardization are recalled and future applications are sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

Introduction et Conclusion

  1. Debail (B.), Reducing Relative Inherent Noise of Commercial Condenser Microphones for Adaptation to Specific Applications,I08 th AES Convention, Paris, 19- 22 Feb. 2000, Preprint n° 5075.

  2. Elko (G.W.), Microphone array systems for hands-free telecommunication,Speech Communication, Special Issue on Acoustic Echo Control and Speech Enhancement techniques,20 n° 3–4, pp. 229–240, 1996.

    Google Scholar 

  3. Doc, ETSI 0358 601 (TR 101110), Digital Cellular Telecommunications system (Phase 2+), Characterization, test methods and Quality assessment for hands-free mobile stations, 1997.

  4. Gilloire (A.), Jullien (J.P.), L’acoustique des salles dans les télécommunications, L’échodes Recherches, n° 127, pp. 43–54, 1987.

  5. Recommandation uit-t P. 340, Caractéristiques de transmission et paramètres relatifs à la qualité vocale des postes téléphoniques mains-libres, 2000.

  6. Mahieux (Y.), Petit (J.P.), Emerit (M.), Le Tourneur (G.), Thomas (J.P.) Le traitement du son pour la téléconférence, L’écho des Recherches, n° 171, pp. 65–76, 1998

  7. Marro (C), Mahieux (Y.), Simmer (K.U.), Analysis of Noise Reduction and Dereverberation Techniques Based on Microphone Arrays with Postfiltering.IEEE Transactions on Speech and Audio Processing,6, n° 3 (1998), pp. 240–259.

    Article  Google Scholar 

Section II

  1. Akbari (A.), Rehaussement de la parole en ambiance bruitée, Application aux télécommunications mainslibres, Thèsede I’Universitéde Rennes 1, (1995).

  2. Ayad (B.), Faucon (G.), Acoustic echo and noise cancelling for hands-free communication systems,International Workshop on Acoustic Echo Control, Roros, Norway, (1995), pp. 48–51.

  3. Beaugeant (C.), Réduction de bruit et annulation d’écho pour les systèmes mobiles,These de I’Universite de Rennes 1, (1999).

  4. Benamar (A.), Etude et implémentation de la fonction de contrôle de l’écho acoustique pour la radiotéléphonie mains-libres, Thésede I’Université de Paris-Sud, Orsay, (1996).

  5. Berouti (M.), Schwartz (R.), Makhoul (J.), Enhancement of speech corrupted by acoustic noise,Proceedings ICASSP, (1979), Washington, United States, pp. 208–211.

  6. Cappe (O), Elimination of the musical noise phenomenon with the Ephraïm and Malah noise suppressor,IEEE Trans, on SAP, (1994),2, n°2, pp. 345–349.

    Google Scholar 

  7. Capman (F.), Boudy (J.), Lockwood (P.), Acoustic echo cancellation and noise reduction in the frequency domain: a global optimization,Proceedings EUSIPCO, Trieste, Italy, (1996), pp. 29–32.

  8. Carayannis (G.), Manolakis (D.) andKalouptsidis (N.), A fast sequential algorithm for least-squares filtering and prediction,IEEE Trans, on ASSP, (1983),31, n° 6, pp. 1394–1402.

    MATH  Google Scholar 

  9. Cioffi (J.) andKailath (T.), Fast recursive LS transversal filters for adaptive processing,IEEE Trans, on ASSP, (1984),32, pp. 304–337.

    MATH  Google Scholar 

  10. Dobunger (G.), Computationally efficient speech enhancement by spectral minima tracking in subbands,Proceedings EUROSPEECH, (1995), Madrid, Spain, pp. 1513–1516.

  11. Dreiseitel (P.), Puder (H.), A combination of noise reduction and improved echo cancellation,International Workshop on Acoustic Echo Control, London, United Kingdom, (1997), pp. 180–183.

  12. Ephraim (Y.), Malah (D.), Speech enhancement using a minimum mean square error short-time spectral amplitude estimator,IEEE Trans.on ASSP, (1984),32, n°6,pp. 1109–1121.

    Google Scholar 

  13. Ephraim (Y.) andMalah (D.), Speech enhancement using a minimum mean-square error log-spectral amplitude estimator,IEEE Trans, on ASSP, (1985),33, n° 2, pp. 443–445.

    Google Scholar 

  14. Faucon (G.), Le Bouquin-Jeannes (R.), Joint system for acoustic echo cancellation and noise reduction,Proceedings EUROSPEECH, Madrid, Spain, (1995), pp. 1525–1528.

  15. Furukawa (T.), Kubota (H.) and Tsuji (S.). The orthogonal projection algorithm for block adaptive signal processing,Proceedings ICASSP, (1989), Glasgow, Scotland, pp. 1059-1062.

  16. Gay (S.), A fast converging, low complexity adaptive filtering algorithm.3 rd International Workshop on Acoustic Echo Control, (1993), Plestin-les-greves, France.

  17. Gay (S.), Tavathia (S.), The fast affine projection algorithm.Proceedings ICASSP, Detroit, United States, (1995), pp. 3023–3027.

  18. Gilloire, (A.), Experiments with sub-band acoustic echo cancellers,Proceedings ICASSP, Dallas, United States, (1987), pp. 2141–2144.

  19. Gilloire, (A.) andVetterli, (M.), Adaptive filtering in subbands with critical sampling: Analysis experiments and application to acoustic echo control,IEEE Trans, on SP, (1992),40,n° 8, pp. 1862–1875.

    Article  MATH  Google Scholar 

  20. Guelou (Y), Benamar (A.), Scalart (P.), Analysis of two structures for combined acoustic echo cancellation and noise reduction,Proceedings ICASSP, Atlanta, United States, (1996), pp. 637-640.

  21. Gustafsson (S.), Martin (R.) andVary (P.), Combined acoustic echo and noise reduction for hands-free telephony,Signal Processing, (1998),64, pp. 21–32.

    Article  MATH  Google Scholar 

  22. Gustafsson (S.) and Jax (P.), Combined residual echo and noise reduction : a novel psychoaccoustically motivated algorithm,Proceedings EUSIPCO, (1998), Rhodes, Greece, pp. 945-952.

  23. ISO, projet de norme internationale ISO 11172-3 MPEG audio, London, United Kingdom (1992). Joh88]Johnston (J.D.), Transform coding of audio signals using perceptual noise criteria,IEEE Journal on Selected Areas in Communication, (1988),6, n° 2, pp. 314-323.

    Google Scholar 

  24. Kellermann, (W.), Analysis and design of multirate systems for cancellation of acoustical echoes,Proceedings ICASSP, New York, United-States, (1988), pp. 2570–2573.

  25. LIM (J.S.), Oppenheim (A.V.), Enhancement and Bandwidth Compression of Noisy Speech,Proceedings IEEE,67 n°12, 1979, pp. 1586–1604.

    Article  Google Scholar 

  26. Ljiung (L.), Morf (M.) andFalconer (D.), Fast calculations of gain matrices for recursive estimation schemes,Int. Journal of Control, (1978),27, pp. 1–19.

    Article  Google Scholar 

  27. Martin (R.), Spectral subtraction based on minimum statistics,in Signal Processing VII, (1994), Edimburgh, United Kingdom, pp. 1182-1185.

  28. McAulay (R. J.) andMalpass (M. L.), Speech enhancement using a soft-decision noise suppression filter,IEEE Trans, on ASSP, (1985),28, n° 2, pp. 137–145.

    Google Scholar 

  29. Montazeri (M.) andDuhamel (P.), A set of algorithm linking NLMS and block RLS algorithm,IEEE Trans, ton SP, (1995),43, n° 2, pp. 444–453.

    Article  Google Scholar 

  30. Moustakides (G.), Theodoridis (S.), Fast Newton transversal algorithms — A new class of adaptive estimation algorithms,IEEE Trans, on SP, (1991),39, n° 10, pp. 2184–2193.

    Article  MATH  Google Scholar 

  31. Ozeki (K.) andUmeda (T.), An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties,Electronics and Communications in Japan, (1984),67, n° 5, pp. 19–27.

    MathSciNet  Google Scholar 

  32. Petillon (T.), Gilloire (A.) andTheodoridis (S.), The fast Newton transversal filter: An efficient scheme for acoustic echo cancellation in mobile radio,IEEE Trans, on SP, (1994),42, n° 3, pp. 509–517.

    Article  Google Scholar 

  33. Scalart (P.), Benamar (A.), A system for speech enhancement in the context of hands-free radiotelephony with combined noise reduction and acoustic echo cancellation.Speech Communication, (1996),20, n°3–4, pp. 203–214.

    Article  Google Scholar 

  34. Tanaka (M.), Makino (S.) andKojima (J), A block exact affine projection algorithm,IEEE Trans, on SAP, (1999),7, n° 1, pp. 79–86.

    Google Scholar 

  35. Tousakalas (D.), Paraskevas (M.) and Mourjopoulos (J.), Speech enhancement using psychoacoustic criteria,Proceedings ICASSP, (1993), pp. 359–362.

  36. Turbin (V.), Combinaison du filtrage adaptatif et du filtrage optimal pour réaliser l’annulation de l’écho acoustique dans un contexte de téléconférence,Thèse université de Rennes I, (1998).

  37. Vary (P.), Noise suppression by spectral magnitude estimation - Mechanism and theoritical limits.Signal Processing VIII, (1985), pp. 387–400.

    Article  Google Scholar 

  38. Virag (N.), Single channel speech enhancement based on masking properties of the human auditory model.IEEE Trans, on SAP, (1999),7, n° 2, pp-126–137.

    Google Scholar 

  39. Wang (D. L.) andLim (J.S.), The unimportance of phase in speech enhancement.IEEE Trans, on ASSP, (1982),30, n° 4, pp. 679–681.

    Article  Google Scholar 

Section III

  1. Bamford (J.S.), An analysis of Ambisonic Sound Systems of First and Second Order. Ph.D. thesis, University of Waterloo, Ontario, Canada (1995).

    Google Scholar 

  2. Bauck (J.), Cooper (D.H.), Generalized Transaural Stereo and Applications.Journal of Audio Eng. Soc.,44, n° 9, pp. 683–705 (1996).

    Google Scholar 

  3. Blauert (J.), Spatial Hearing: The Psychophysics of Human Sound Localization, Cambridge, Massachusetts, The MIT Press (1983).

    Google Scholar 

  4. Chateau (N.), Contribution of perceived audiovisual spatial fusion to subjective audiovisual quality. Forum Acusticum 99, European Acoustics Association and Acoustical Society of America (mars 1999).

  5. Condamines (G.), Stéréophonie: Cours de relief sonore théorique et appliquée. Paris : Masson (1978).

    Google Scholar 

  6. Creative Labs. Environmental Audio Extension : EAX 2.0, http://www.creative.com (1999)

  7. Daniel (J.), Rault (J.B.), Polack (J.D.), Ambisonics Encoding of Other Audio Formats for Multiple Listening Conditions. Presented at the 105th A.E.S. Convention, San Francisco (Sept. 1998). Preprint n° 4795.

  8. Dolby, http://www.dolby.com/tech (1999).

  9. dts: Digital Theater System, http://www.dtstech.com (1999).

  10. Gerzon (M.A.), Ambisonics in Multichannel Broadcasting and Video,J. Audio Eng. Soc.,33, n° 11, (1985), pp. 859–871.

    Google Scholar 

  11. Gerzon (M.A.), Ambisonic Decoders for HDTV.Proceedings 92nd A.E.S. Convention (mars 1992).

  12. Gerzon (M.A.), General Metatheory of Auditory Localisation, Proceedings 92nd A.E.S. convention (march 1992).

  13. Hugonnet (C), Walder (P.), Théorie et pratique de la prise de son stéréophonique, Paris, Eyrolles (1994).

  14. Ircam, http://www.ircam.fr/equipes/salles/spat/index. html (1999).

  15. Jessel (M.), Acoustique théorique, propagation et holophonie, Paris, Masson (1973).

    Google Scholar 

  16. Kirkeby (O.), Nelson (P.A.), Hamada (H.), « the stereo dipole » - A virtual source imaging system using two closely spaced loudspeakers,J. Audio Eng. Soc.,46, n° 5 (1998), pp 387–395.

    Google Scholar 

  17. Möller (H.), Fundamentals of Binaural Technology.Applied Acoustics,36 (1992), pp. 171–218.

    Article  Google Scholar 

  18. MPEG2: «Moving Picture Expert Group ». http://www.cselt.it/mpeg/standards/mpeg-2 (1992).

  19. MPEG4: «Moving Picture Expert Group ». http://www.cselt.it/mpeg/standards/mpeg-4 (1999).

  20. Nicol (R.), Emerit (M.), 3D-Sound Reproduction over an Extensive Listening Area: a Hybrid Method Derived from Holophony and Ambisonic,Proceedings of the 16 th A.E.S. International Conference on Spatial Sound Reproduction (April 1999), pp. 436–453.

  21. Plomp (R.), Acoustical aspects of cocktail parties.Acoustica,38 (1977), pp 186–191.

    Google Scholar 

  22. Polack (J.D.), Cours de psychoacoustique et d’acoustique des salles, Le Mans: Université du Maine (1995).

    Google Scholar 

  23. Savioja (L.), Huopaniemi (J.), Lokki (T.), Väänä- nen (R.), Creating Interactive Acoustic Environments.J. Audio Eng. Soc.,47, n° 9 (1999), pages 675–705.

    Google Scholar 

  24. sdds: «Sony Dynamic Digital Sound ». http://www.sdds.com (1999).

  25. Snow (W.B.), Basic Principles of Stereophonic Sound,Journal of the smpte,61 (Nov. 1953), pp. 567–589.

    Google Scholar 

  26. Theile (G.), The new Sound Format,94th Audio Engineering Society Convention, Berlin (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emerit, M., Scalart, P. & Gilloire, A. Audio interfaces and signal processing. Ann. Télécommun. 55, 526–537 (2000). https://doi.org/10.1007/BF02995206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02995206

Mots clés

Key words

Navigation