Skip to main content
Log in

Absorptiometric assessment of muscle-bone relationships in humans: reference, validation, and application studies

  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

This report summarizes some preliminary absorptiometric (DXA, QCT/pQCT) studies from our laboratory, supporting the following assumptions. 1. InHomo sapiens at all ages, natural proportionality between DXA-assessed bone mineral mass (bone mineral content, BMC) and muscle mass (lean mass, LM) of the whole body or limbs is specific for ethnicity, gender, and reproductive status, but not for body weight, height, or body mass index. 2. This proportionality is sensitive to many kinds of endocrine-metabolic perturbations. 3. Percentilized or Z-scored charts of the BMC/LM correlations as determined in large samples of healthy individuals can provide a diagnostic reference for evaluating proportionality in different conditions. 4. Employing exclusively DXA, this methodology can be applied to discriminate between “disuse-related” and “metabolic” osteopenias based on the finding of normal or low BMC/LM percentiles or Z-scores respectively, with important therapeutic and monitoring implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin R, Burr D, Sharkey N (1998) Skeletal Tissue Mechanics. Springer, New York

    Google Scholar 

  2. Ferretti JL (1998) Biomechanical properties of bone. In: Genant H, Guglielmi G, Jergas M (eds) Bone Densitometry and Osteoporosis. Springer, Berlin, pp 143–161

    Google Scholar 

  3. Kanis J (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporosis Int 4:368–372

    Article  CAS  Google Scholar 

  4. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) JAMA 285:785–791

    Google Scholar 

  5. Ferretti JL, Frost HM (2002) Osteopenias and osteoporoses. Muscle-bone interactions, safety factors, and fracture risk. In: An Y (ed) Orthopaedic Issues in Osteoporosis. CRC, Boca Raton, pp 203–217

  6. Ferretti JL, Cointry G, Capozza R (2002) Non-invasive analysis of bone mass, structure, and strength. In: An Y (ed) Orthopaedic Issues in Osteoporosis. CRC, Boca Raton, pp 45–67

  7. Frost HM, Ferretti JL, Jee WSS (1998) Some roles of mechanical usage, muscle strength, and the mechanostat in skeletal physiology, disease, and research. Calcif Tissue Int 62:1–7

    Article  PubMed  CAS  Google Scholar 

  8. Frost HM (2004) The Utah Paradigm of Skeletal Physiology. ISMNI, Athens

  9. Lanyon LE, Rubin CT, Raisz LE, Marotti G, Less H (1993) Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int 53(suppl 1):S102-S107

    Article  PubMed  Google Scholar 

  10. Mundy G (1995) Bone Remodeling and Its Disorders. Martin Dunitz, Surrey

  11. Frost HM (1997) Defining osteopenias and osteoporoses. Another view (with insights from a new paradigm). Bone (NY) 20:385–389

    CAS  Google Scholar 

  12. Ferretti JL, Cointry G, Frost HM (2003) Body composition and osteoporosis. Mech Aging Dev 124:269–279

    Article  PubMed  Google Scholar 

  13. Cointry G, Capozza R, Negri A, Roldán E, Ferretti JL (2004) Biomechanical background for a noninvasive assessment of bone strength and muscle-bone interactions. J Musculoskel Neuron Interact 4:1–11

    CAS  Google Scholar 

  14. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrences of osteoporotic fractures. Br Med J 312:1254–1258

    CAS  Google Scholar 

  15. Meunier P (1999) Evidence-based medicine and osteoporosis: a comparison of fracture risk reduction data from osteoporosis randomised trials. Int J Clin Pract 53:122–127

    PubMed  CAS  Google Scholar 

  16. Vilani P, Bondino-R R, Bouvenot G (1998) Fragilité des données acquises de la science. Ľexemple du fluor dans ľosteoporose. Presse Med 27:361–364

    Google Scholar 

  17. Wilkin T (1999) Changing concepts in osteoporosis. Br Med J 318: 862–865

    CAS  Google Scholar 

  18. Ferretti JL (1997) Noninvasive assessment of bone architecture and biomechanical properties in animals and humans employing pQCT technology. J Jpn Soc Bone Morphom 7:115–125

    Google Scholar 

  19. Ferretti JL, Schiessl H, Frost HM (1998) On new opportunities for absorptiometry. J Clin Densitom 1:41–53

    Article  PubMed  CAS  Google Scholar 

  20. Ferretti JL, Cointry G, Capozza R, Zanchetta J (2002) Dual energy X-ray absorptiometry. In: Preedy V (ed) Skeletal Muscle: Pathology, Diagnosis, and Management of Disease. Greenwich, London, pp 451–458

    Google Scholar 

  21. Schneider P, Capozza R, Braun M, Reiners C, Ferretti JL (2001) Noninvasive (pQCT) assessment of bone quality and relative fracture risk at the distal radius in healthy and wrist-fractured individuals. Osteoporosis Int 12:639–646

    Article  CAS  Google Scholar 

  22. Rho J, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102

    Article  PubMed  CAS  Google Scholar 

  23. Ferretti JL, Capozza R, Cointry G, García S, Plotkin H, Alvarez-F M, Zanchetta J (1998) Gender-related differences in the relationships between densitometric values of whole-body mineral content and lean mass in humans between 2 and 87 years of age. Bone 22:683–690

    Article  PubMed  CAS  Google Scholar 

  24. Ferretti JL, Capozza R, Cointry G, Capigioni R, Roldán E, Giménez C, Zanchetta J (2000) Densitometric and tomographic analyses of musculoskeletal interactions in humans. J Musculoskel Neuron Interact 1:18–21

    Google Scholar 

  25. Schneider P, Biko J, Reiners C, Demidchik Y, Drozd V, Capozza R, Cointry G, Ferretti JL (2004) Impact of parathyroid status and Ca and vitamin-D supplementation on bone mass and muscle-bone relationships in 208 Belarussian children after thyroidectomy because of thyroid carcinoma. Exp Clin Endocrinol Diabetes 112: 444–450

    Article  PubMed  CAS  Google Scholar 

  26. Augat P, Reeb H, Claes L (1996) Prediction of fracture load at different skeletal sites by geometrical properties of the cortical shell. J Bone Miner Res 11:1356–1362

    Article  PubMed  CAS  Google Scholar 

  27. Currey J (1999) The design of mineralized tissues for their mechanical functions. J Exp Biol 202:3285–3291

    PubMed  CAS  Google Scholar 

  28. Hayes W, Piazza S, Zysser P (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin N Am 29:1–18

    PubMed  CAS  Google Scholar 

  29. Wainwright S, Biggs W, Currey J, Gossline J (1976) Mechanical Design in Organisms. Arnold, London

    Google Scholar 

  30. Ferretti JL, Capozza R, Zanchetta J (1996) Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 18:97–102

    Article  PubMed  CAS  Google Scholar 

  31. Capozza R, Cointry G, Cure-Ramirez P, Ferretti JL, Cure-Cure C (2004) A DXA study of muscle-bone relationships in the whole body and limbs of 2512 normal men and pre- and post-menopausal women. Bone 35:283–295

    Article  PubMed  CAS  Google Scholar 

  32. Ulla M, Stivala M, Ghiglione E, Noriega R, Cointry G, Ferretti JL (2001) Altered relationships between mineral and lean masses in obese, euglycemic, hyperinsulinemic women. J Bone Miner Res 16(S1):S402

    Google Scholar 

  33. Claus-H H, Fideleff H, Chervin A, Stalldecker G, Sinay I, Sobrado P, Cointry G, Ferretti JL (2001) Effects of GH on the mineral, lean, and fat masses in pan-hypopituitary men and women. J Bone Miner Res 16(S1):S403

    Google Scholar 

  34. Negri A, Cointry G, Salica D, Zanchetta J, Ferretti JL (2001) Bone/lean mass relationships in peritoneally-dialysed and haemodialysed men and women. J Bone Miner Res 16(S1):S544

    Google Scholar 

  35. Ferretti JL, Cointry G, Capozza R, Capiglioni R, Chiappe M (2001) Analysis of biomechanical effects on bone and on the muscle-bone interactions in small animal models. J Musculoskel Neuron Interact 1:263–274

    CAS  Google Scholar 

  36. Schiessl H, Ferretti JL, Tysarczyk-N G, Willnecker J (1996) Noninvasive bone strength index as analyzed by peripheral quantitative computed tomography. In: Schönau E (ed) Pediatric Osteology. Elsevier, Amsterdam, pp 141–145

    Google Scholar 

  37. Armitage P, Berry G (1994). Statistical Methods in Medical Research. Blackwell, London

    Google Scholar 

  38. Mazess R, Barden H, Bisek J, Hanson J (1990) Dual-energy X-ray absorptiometry for whole-body and regional bone-mineral and soft-tissue composition. Am J Clin Nutr 51:1106–1112

    PubMed  CAS  Google Scholar 

  39. Bassey E, Rothwell M, Littlewood J, Pye W (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13:1805–1813

    Article  PubMed  CAS  Google Scholar 

  40. Cheng S, Sipilä S, Taaffe D, Puolakka J, Suominen H (2002) Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in postmenopausal women. Bone 31:126–135

    Article  PubMed  CAS  Google Scholar 

  41. Järvinen T, Kannus P, Sievànen H (2003) Estrogen and bone: a reproductive and locomotive perspective. J Bone Miner Res 18: 1921–1931

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Ferretti.

About this article

Cite this article

Cointry, G.R., Capozza, R.F., Ferretti, S.E. et al. Absorptiometric assessment of muscle-bone relationships in humans: reference, validation, and application studies. J Bone Miner Metab 23 (Suppl 1), 109–114 (2005). https://doi.org/10.1007/BF03026334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03026334

Key words

Navigation