Skip to main content
Log in

The effect of the recombinant human interleukin-2 Gene in potato (Solanum tuberosum cv. superior)

  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

To examine the effect of the T-cell growth factor (human interleukin-2), we constructed a binary vector, pSSK-1, carrying the recombinant human interleukin-2 (rhlL-2) gene, and transferred it intoAsrobacterium tumefaciens. Using this construct, we then transformed potato explants(Solanum tuberosum cv. Superior), achieving 100% regeneration of shoots on a modified MS medium. Of the putative transformed shoots, 81% rooted and were selected on 200 ms/L kanamycin. Both Southern and northern analyses verified the transformation events. An ELISA test also indicated that the rhlL-2 protein was produced from rhlL-2-transformed potatoes. To determine whether this protein was biologically active in the potato cells, we performed a biological assay using the 11.-2 dependent cell line, CTLL-2. The suspension containing extract from the transformants showed significant proliferation of the 11.-2 dependent CTLL-2 cells, whereas cells did not proliferate in the nontransformed potato. We then grew the verified rhlL-2 transgenic potatoes in soil, and compared their performance with that of nontransgenic potatoes as well as those that had been transformed with GUS. Growth rates, as calculated from plant heights, were up to 50% higher than for either the nontrans-genic or the GUS-transformed potatoes. Similar patterns were found withArabidopsis thaliana plants treated in the same manner. All of these results suggest that rhlLo2 may function as a growth factor in potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bernd MR, Jens K, Hannah LC, Willmitzer L, Sonnewald U (1990) One of two different ADP-glucose pyrophos-phorylase genes from potato responds strongly to elevated levels of sucrose. MGG224: 35–42

    Google Scholar 

  • Bubenik J, Indrova M, Perlmann R Berzins K, Mach O, Kraml J, Toulcova A (1985) Tumour inhibitory effects of TCGF/IL-2/-containing preparations. Cancer Immunol19:57–61

    CAS  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Aced Sci USA81: 1991–1995

    Article  CAS  Google Scholar 

  • Cone K (1989) Yet another plant DNA reparation. Maize Genetics Newsletter, pp 63–68

  • Culver JN, Lehtok, Close SM, Hilf ME, Dawson WO (1993) Genomic position effects the expression of tobacco mosaic virus movement and coat proteins genes. Proc Natl Acad Sci USA90: 2055

    Article  PubMed  CAS  Google Scholar 

  • Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay. Quantitative assay of immunoglobulin G Immunochemistry18: 871–874

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high spcecific activity. Anal Biochem132: 6–13

    Article  PubMed  CAS  Google Scholar 

  • Gillis S, Ferm MM, Ou W, Smith KA (1978) T cell growth factor, parameters of production and quantitative microassay for activity. J Immuno1120: 2027–2032

    CAS  Google Scholar 

  • Hiatt A (1990) Antibodies produced in plants. Nature344: 469–470

    Article  PubMed  CAS  Google Scholar 

  • Hiatt A, Caffertey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature342: 76–78

    Article  PubMed  CAS  Google Scholar 

  • Hong CB, Jeon JH (1987) A sample procedure for RNA isolation from plants and preservation of plant material for RNA analysis. KorJ Bot30: 201–203

    CAS  Google Scholar 

  • Hong CB, Park SM (1997) Transcription of human interleukin-2 Gene inNicotiana tabacum driven by CaMV35S promoter. J Plant Biol40: 110–114

    Article  Google Scholar 

  • Horsch RB (1985) A simple and general method for transforming genes into plants. Science227: 1229–1231

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: ß-glucuronidase as a sensitive and versatile gene marker in higher plants. EMBO J6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Jeffrey SR, Corthesy B, Flanagan WM, Crabtree GR (1992) Regulation of the interleukin-2 gene. Interleukins: molecular biology and immunology. Chem Immunol Basel Karger51: 266–298

    Article  Google Scholar 

  • Jeyaseelan K, Chang MCM, Kon OL (1987) Genes and Proteins Manual of Selected Techniques in Molecular Biology. ICSU Press, pp 151–170

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science268: 716–719

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for growth and bioassay with tobacco tissue culture. Physiol Plant15:473–497

    Article  CAS  Google Scholar 

  • Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. New Engl J Med313: 1485–1492

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Clonirig, a Laboratory Manual 2nd ed, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Smith KA (1988) Interleukin-2: Inception, impact and implications. Science240: 1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Sree-Ramulu K (1987) Case histories of genetic variability in vitro,In Cell Culture and Somatic Cell Genetics of Plants, Academic Press, NY

    Google Scholar 

  • Stiekema W, Heidekamp F, Louwerse J, Verhoeven H, Dijkhuls P (1988) Introduction of foreign genes into potato cultivars Bintje and Desiree using an Agrobacte-riumtumefaciens binary vector. Plant Cell Rep7: 47–50

    Article  CAS  Google Scholar 

  • Taniguchi T, Hiroshi M, Takashi F, Chikako T, Nobukazu K, Ryota Y, Junji H (1983) Structure and expression of a cloned cDNA for human interleukin-2. Nature302: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Valvekens D, Muntagu MV, Lijsebettens MV (1988) Transformation ofArabidopsis thaliana. Proc Natl Acad Sci USA85: 5536–5540

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA, Whaley KJ (1998) A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nature Biotechnol16: 1361–1364

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeonsook Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y., Cheong, H. The effect of the recombinant human interleukin-2 Gene in potato (Solanum tuberosum cv. superior). J. Plant Biol. 44, 193–198 (2001). https://doi.org/10.1007/BF03030351

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03030351

Keywords

Navigation