Skip to main content
Log in

Increase in glial fibrillary acidic protein following neural trauma

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Immunohistochemical staining and quantitative evaluation of glial fibrillary acidic protein (GFAP) were carried out in a stab wound model of neural trauma in the rat. Increased GFAP staining was detected in reactive cortical astrocytes in the vicinity of the wound at 3,7, and 30 d following injury. Western blots immunostained for GFAP also demonstrated an increase in GFAP in homogenates from the lesioned cortex, compared to the contralateral control side, on days 3, 7, and 30. Specific activity of GFAP expressed as a ratio of lesion/control values showed a fivefold increase from day 0 to day 7, with no further change on day 30. We conclude that neural trauma elicits a quantitative increase in GFAP in the rat cortex during the first week following injury. This increase correlates with both astrocyte hyperthrophy and proliferation. Thus, specific activity of GFAP is a reliable indicator of the onset and progression of astrogliosis in neural trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bignami A. and Dahl D. (1976) The astroglial response to stabbling. Immunoflourescence studies with antibodies to astrocyte specific protein (GFA) in mammalian and submammalian vertebrates.Neuropathol. Appl. Neurobiol. 2, 99–110.

    Article  Google Scholar 

  • Brock T. O. and O’Callahan J. P. (1987) Quantitative changes in the synaptic vesicle proteins. Synapsin I and p38 and the astrocyte-specific protein glial fibrillary acidic protein are associated with chemical-induced injury to the rat central nervous system.J. Neurosci. 7, 931–942.

    PubMed  CAS  Google Scholar 

  • Brockes J. P. (1984) Mitogenic growth factors and nerve dependence of limb regeneration.Science 225, 1280–1287.

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh J. B (1970) The proliferation of astrocytes around a needle wound in the rat brain.J. Anat. 106, 471–487.

    PubMed  CAS  Google Scholar 

  • Cotman C. W. and Nadler J. V. (1978) Reactive synaptogenesis in the hippocampus, inNeuronal Plasticity (Cotman C.W. ed.), pp. 227–271, Raven Press, New York.

    Google Scholar 

  • Crutcher K. A. and Collins F. (1986) Entorhinal lesions result in increased nerve growth factor-like growth-promoting activity in medium conditioned by hippocampal slices.Brain Res. 399, 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Eng L. F. (1985) Glial fibrillary, acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes.J. Neuroimmunol.8, 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Eng L. F. and DeArmond S. T. (1983) Immunochemistry of the glial fibrillary acidic protein, inProgress in Neuropathology (Zimmerman H. M., ed.), pp. 19–39, Raven Press, New York.

    Google Scholar 

  • Eng L. F. and Rubinstein, L. J. (1978) Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors.J. Histochem. Cytochem. 26, 513–522.

    PubMed  CAS  Google Scholar 

  • Eng L. F., Stocklin E. Lee Y.-L., Shiurba R. A., Coria F., Halks-Miller M., Mozsgai C., Fukayama G., and Gibbs M. (1986) Astrocyte culture on nitrocellulose membranes and plastic: Detection of cytoskeletal proteins and mRNAs by immunocytochemistry andin situ hybridization.J. Neurosci. Res. 16, 239–250.

    Article  PubMed  CAS  Google Scholar 

  • Eng L. F., D’amelio F. E., and Smith M. E. (1989) Dissociation of GFAP intermediate filaments in EAE: Observations in the lumbar spinal cord.Glia 2, 308–317.

    Article  PubMed  CAS  Google Scholar 

  • Gall C. Rose G., and Lynch G. (1979) Proliferative and migratory activity of glial cells in the partially deafferented hippcampus.J. Comp. Neurol. 183, 539–550.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D. and Lachman L. B. (1985) Interleukin-1 stimulation of astroglial proliferation after brain injury.Science 228, 497–499.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D., Baker T.J., Shih K.-C.N., and Lachman L. B. (1986) Interleukin-1 of the central nervous system is produced by amoeboid microglia.J. Exp. Med. 164, 594–604.

    Article  PubMed  CAS  Google Scholar 

  • Giulian D. and Young D. G. (1986) Brain peptides and glial growth. II. identification of cells that screte glia-promoting factors.J. Cell Biol. 102, 812–820.

    Article  PubMed  CAS  Google Scholar 

  • Goetschy J. F., Ulrich G., Aunis D., and Ciesielski-Treska, J. (1987) Fibronectins and collagens modulate the proliferation and morpholgy of astroglial cells in culture.Int. J. Dev. Neurosci. 5, 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Graeber M. B. and Kreutzberg G. W. (1986) Astrocytes increase in glial fibrillary acidic protein during retrograde changes of facial motor neurons.J. Neurocytol. 15, 363–373.

    Article  PubMed  CAS  Google Scholar 

  • Graeber M. B., Tetzlaff W., Streit W.J., and Kreutzberg G. W. (1988) Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy.Neurosci. Lett. In press.

  • Halks-Miller M., Henderson M., and Eng L. F. (1986) Alpha-tocopherol decreases lipid peroxidation, neuronal necrosis and reactive gliosis in reaggregate cultures of fetal rat brain.J. Neuropathol Exp. Neurol. 45, 471–484.

    Article  PubMed  CAS  Google Scholar 

  • Heldin C. H., Westermark B., and Wasteson A (1979) Platelet-derived growth factor: Purification and partial characterization.Proc. Natl. Acad. Sci. USA 76, 3722–3726.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura T., Nakanishi K., Fukayama R., Watanabe S., and Fujita S. (1986) GFAP-gene expression on the astroglia of rat facial nuclei after transition of the facial nerve, Abstract 78, X International Congress of Neuropathology, September 7–12, Stockholm.

  • Latov N., Nilaver G., Zimmerman E. A., Johnson W. G., Silverman A., Defendini R., and Cote L. (1979) Fibrillary astrocytes proliferate in response to brain injury.Devel. Biol. 72, 381–384.

    Article  CAS  Google Scholar 

  • Lim R. and Miller J. F. (1984) Sequential interaction of glia maturation factor with insulin.Science 223, 1419–1420.

    Article  PubMed  CAS  Google Scholar 

  • Lowry D. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Mathewson A. J. and Berry M. (1985) Observation on the astrocyte response to a cerebral stab wound in adult rats.Brain Res. 327, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Morrison R. S., De Vellis J., Lee Y.-L., Eng L. F., and Bradshaw R. A. (1985) Hormone and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain actrocytes.J. Neurosci. Res. 14, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Nathaniel E. J. H. and Nathaniel D. R (1981) The reactive astrocyte.Adv. Cell. Neurobiol. 2, 249–301.

    CAS  Google Scholar 

  • Nieto-Sampedro M. and Berman M. A. (1987) Interleukin-1-like activity in rat brain: Sources targets and effect of injury.J. Neurosci. Res. 17, 214–219.

    Article  PubMed  CAS  Google Scholar 

  • Reier P. J. (1986) Gliosis following CNS injury: the anatomy of astrocytic scars and their influences on axonal elongation, in,Astrocytes (Federoff S. and Vernadakis A., eds.) pp. 263–324, Academic Press, New York.

    Google Scholar 

  • Rose G., Lynch G., and Cotman C. W. (1976) Hypertrophy and redistribution of astrocytes in the deafferented dentate gyrus.Brain Res. Bull. 1, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Schiffer D., Giordana M., Mighelli A., Giaccone G., Pezzotta S., and Mauro A. (1986) Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain.Brain Res. 374, 110–118.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. E. and Eng L. F. (1987) Glial fibrillary acidic protein in chronic relapsing experimental allergic encephalomyelitis in SJL/J mice (1987).J. Neurosci. Res. 18, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. E., Gibbs M. A., Forno L. S., and Eng L. F. (1987) [3H]-thymidine labeling of astrocytes in experimental allergic encephalomyelitis.J. Neuroimmunol. 15, 309–321.

    Article  PubMed  CAS  Google Scholar 

  • Sternberger L. S., Hardy P. H. Jr., and Cuculis J. J. (1970) The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidaseantiperoxidase) and its use in the, identification of spirochetes.J. Histochem. Cytochem. 18, 315–333.

    PubMed  CAS  Google Scholar 

  • Tetzlaff W., Graeber M. B., Bisby M. A., and Kreutzberg G. W. (1988) Increased glial fibrillary acidic protein synthesis in astrocytes during retrograde reaction of the rat facial nucleus.Glia 1, 90–95.

    Article  PubMed  CAS  Google Scholar 

  • Topp K. S., Faddis B. T., and Vijayan V. K. (1989) Trauma-induced proliferation of astrocytes in the brain of young and aged rats.Glia 2, 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gel to nitrocellulose sheets: procedure and some application.Proc. Natl. Acad. Sci.,76, 4350–4354.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayan, V.K., Lee, Y.L. & Eng, L.F. Increase in glial fibrillary acidic protein following neural trauma. Molecular and Chemical Neuropathology 13, 107–118 (1990). https://doi.org/10.1007/BF03159912

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159912

Index Entries

Navigation