Skip to main content
Log in

Temporal changes in superoxide dismutase, glutathione peroxidase, and catalase levels in primary and peri-ischemic tissue

Monosialoganglioside (GM1) treatment effects

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Time-dependent changes in levels of the antioxidant enzymes, superoxide dismutasae (SOD), glutathione peroxidase (GSHPOD), and catalase (CAT) after cortical focal ischemia in rat indicate that: (1) primary and peri-ischemic tissues differ in both rate and the magnitude of oxyradical-induced ischemic injury, and (2) ischemic tissue remains vulnerable to oxyradical damage as long as 72 h after ischemia since the antioxidant enzyme levels remain at or below basal levels. After 72h, the increased levels of these enzymes are sufficient to protect tissue against oxyradical damage. GM1 ganglioside (10 mg/kg, im) further increased the already elevated levels of the enzymes after ischemia, thereby indicating the GM1 treatment increases the capacity of ischemic tissue to protect against oxyradical injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi H. (1984) Catalase in vitro, inMethods in Enzymology, vol. 105 (Packer L., ed.) pp. 121–126, Academic, New York.

    Google Scholar 

  • Bazan N. G. (1976) Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock.Adv. Exp. Med. Biol. 72, 371–335.

    Google Scholar 

  • Bharucha V. A., Wakade C. G., Karpiak S. E., and Mahadik S. P. (1989) ATPase levels after ischemia indicate membrane failure.Trans. Amer. Soc. Neurochem. 20, 162.

    Google Scholar 

  • Bharucha V. A., Wakade C. G., Mahadik S. P., and Karpiak S. E. (1991) GM1 ganglioside treatment reduces functional deficits associated with cortical focal ischemia.Exp. Neurol. 114, 136–139.

    Article  PubMed  CAS  Google Scholar 

  • Braughler J. M. and Hall D. E. (1989) Central nervous system trauma and stroke: 1. Biochemical consideration for oxygen radical formation and lipid peroxidation.Free Radical Biol. Med. 16, 289–301.

    Article  Google Scholar 

  • Cao W., Carney J. M., Duchon A., and Floyd R. A. (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain.Neurosci. Lett. 88, 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Chan P. H., Longar S., and Fishman R. A. (1987) Protective effects of liposome-entrapped superoxide dismutase on post traumatic brain edema.Ann. Neurol. 21, 540–547.

    Article  PubMed  CAS  Google Scholar 

  • Chan P. H., Chu L., Chen S. F., Carlson E. J., and Epstein C. J. (1990) Reduced neurotoxicity in transgenic mice overexpressing human copper-zinc-super-oxide dismutase.Stroke 21 (suppl. III) 80–82.

    Google Scholar 

  • Chen S. T., Hsu C. Y., Hogan E. L., Maricq H., and Balentine J. D. (1986) A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction.Stroke 17, 738–743.

    PubMed  CAS  Google Scholar 

  • Cohen G. (1982) Oxygen radicals, hydrogen peroxide, and Parkinson’s disease, inPathology of Oxygen (Autor A. P., ed.) pp. 115–126, Academic, New York.

    Google Scholar 

  • Cuello A. C., Garafalo L., Kenigsberg R. L, and Maysinger D. (1989) Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons.Proc. Natl. Acad. Sci. 86, 2056–2060.

    Article  PubMed  CAS  Google Scholar 

  • Demopoulos H. B., Flamm E. S., and Pietronigro D. D. (1980) The free radical pathology and the microcirculation in the major central nervous system disorders.Acta. Physiol. Scand. 49 (suppl.) 91–119.

    Google Scholar 

  • Dudnik L. B., Tikhaze A. K., Alesenko V. Z., and Burlakova E. B. (1981) Changes in superoxide dismutase and gluthathione peroxidase activity during intensification of lipid peroxidation in ischemia of the liver.Bull. Expl. Biol. Med. 91, 488–490.

    Article  Google Scholar 

  • Edgar A. D., Strosznajder J., and Horrocks L. A. (1982) Activation of ethanolamine phospholipase A2 in brain during ischemia.J. Neurochem. 39, 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Flohe L. and Gumzler W. A. (1984) Assays of glutathione peroxidase, inMethods in Enzymology, vol. 103 (Packer L., ed.) pp. 114–121, Academic, New York.

    Google Scholar 

  • Floyd R. A. (1990) Role of oxygen free radicals in carcinogenesis of brain ischemia.FASEB J. 4, 2587–2597.

    PubMed  CAS  Google Scholar 

  • Freeman B. A. and Crapo J. D. (1982) Biology of disease, free radicals and tissue injury.Lab. Invest. 47, 421–425.

    Google Scholar 

  • Fried R. (1975) Enzymatic and non-enzymatic assay of superoxide dismutase.Biochimie 57, 657–660.

    Article  PubMed  CAS  Google Scholar 

  • Hall D. E. and Braugher J. M. (1989) Central nervous system trauma and stroke II Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation.Free Radical Biol. Med. 16, 303–313.

    Article  Google Scholar 

  • Hexum T. D. and Fried R. (1979) Effects of superoxide radicals on transport (Na++K+) adenosine triphosphatase and protection by superoxide dismutase.Neurochem. Res. 4, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson E. K. and Fridovich I. (1975) The induction of bovine erythrocyte super-oxide dismutase with hydrogen peroxide: inactivation of the enzyme.Biochemistry 14, 5294–5299.

    Article  PubMed  CAS  Google Scholar 

  • Hungund B. L., Gokhale V. B., Ortiz A., Karpiak S. E., and Mahadik S. P. (1990) Membrane fatty acids in primary and peri-ischemic cortical tissue following acute GM1 ganglioside treatment.Soc. Neurosci. Abstr. 16, 942.

    Google Scholar 

  • Jackson G. R., Apffel L., Werrbach-Perez K., and Perez-Polo J. R. (1990) Rate of nerve growth factor in oxidant-anti-oxidant balance on neuronal injury: 1. Stimulation of hydrogen peroxide resistence.J. Neurosci. Res. 25, 360–368.

    Article  PubMed  CAS  Google Scholar 

  • Julicher R. H. M., Tijburg L. B. M., Sterrenberg L., Bast A., and Koomen J. (1984) Decreased defense against free radicals in rat heart during normal reperfusion after hypoxic, ischemic and calcium-free perfusion.Life Sci. 35, 1281–1288.

    Article  PubMed  CAS  Google Scholar 

  • Karpiak S. E., Mahadik S. P., and Wakade C. G. (1990a) Ganglioside reduction of ischemic injury.Crit. Rev. Neurobiol. 5, 221–237.

    PubMed  CAS  Google Scholar 

  • Karpiak S. K., Tagliavia A., and Wakade C. G. (1990b) Animal models for the study of drugs in ischemia stroke.Ann. Rev. Pharmacol. Toxicol. 29, 403–414.

    Article  Google Scholar 

  • Karpiak S. E., Wakade C. G., Tagliavia A., and Mahadik S. P. (1991) Temporal changes in edema, Na+, K+, and Ca+ in focal cortical stroke: GM1 ganglioside reduces ischemic injury.J. Neurosci. Res. 30, 512–520.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg H. K. (1977) The influence of membrane fludity on the activity of membrane-bound enzymes, inCell Surface Reviews vol. 3, pp. 205–293, (Poste G. and Nicolson G. L., eds.) Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Kovachich G. B. and Mishra O. P. (1981) Partial inactivation of (Na++K+)-ATPase in cortical brain slices incubated in normal Krebs-Ringer phosphate medium at 1 and at 10 atm oxygen pressure.J. Neurochem. 36, 333–335.

    Article  PubMed  CAS  Google Scholar 

  • Leibovitz B. E. and Siegel B. V. (1980) Aspects of free radical reactions in biological systems: Aging.J. Gerontol. 35, 45–56.

    PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • Mahadik S. P. (1991) Gangliosides, new generation of neuroprotective agents, inEmerging Strategies in Neuroprotection (Marangos P. J. and Lal H., eds.), pp. 187–223, Birkhauser, Boston, MA.

    Google Scholar 

  • Mahadik S. P. and Karpiak S. E. (1988) Gangliosides in treatment of neural injury and disease.Drug Develop. Res. 15, 337–360.

    Article  CAS  Google Scholar 

  • Mahadik S. P., Hawver D. B., Hungund B. L., Li Y-S., and Karpiak S. E. (1989) GM1 ganglioside treatment protects changes in membrane fatty acids and properties of (Na++K+)-ATPase and Mg++ATPase.J. Neurosci. Res. 24, 402–412.

    Article  PubMed  CAS  Google Scholar 

  • Mahadik S. P., Hungund B. L., Makar T. K., Gokhale V., Ortiz A., and Karpiak S. E. (1991) Neuroprotective effects of GM1 treatment following CNS ischemia involves restoration of cellular membrane lipid metabolism and defense against oxyradical toxicity.Soc. Neurosci. Abstr. 17, 1086.

    Google Scholar 

  • Mahadik S. P., Bharucha V. A., Stadlin A., Ortiz A., and Karpiak S. E. (1992) Loss and recovery of activities of α+ and α isozymes of (Na++K+)-ATPase in cortical focal ischemia: GM1 ganglioside protects plasma membrane structure and function.J. Neurosci. Res. 32, 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Mazzari S., Karpiak S. E., Lipartiti M., Seren S., Lazzaro A., Rubin R., Koga T., Fadda E., Toffano G., and Leon A. (1990) Monosialoganglioside effects on excitatory amino acid-related neurotoxicity and cerebral ischemia, inNeurotoxicity of Excitatory Amino Acids (Guidotti A. ed.), pp. 281–291, Raven, New York, NY.

    Google Scholar 

  • Mochowiz S. D., Melamed E., Pikarsky E., and Rappaport Z. H. (1990) Effects of ischemia induced by middle cerebral artery occlusion on superoxide dismutase activity in rat brainStroke 21, 1613–1717.

    Google Scholar 

  • Nemoto E. M. (1978) Pathogenesis of cerebral ischemia-anoxia.Crit. Care. Med. 6, 203–214.

    Article  PubMed  CAS  Google Scholar 

  • Nishikimi M., Rao N. A., and Yagi K. (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen.Biochem. Biophys. Res. Commun. 47, 1133–1137.

    Article  Google Scholar 

  • Ortiz A., MacDonall J., Wakade C. G., and Karpiak S. E. (1990) GM1 ganglioside reduces cognitive dysfunction after focal cortical ischemia.Pharmacol. Biochem. Behav. 37, 679–684.

    Article  PubMed  CAS  Google Scholar 

  • Paschen W., Linn F., and Csiba L. (1985) Superoxide dismutase activity in experimental focal ischemia.Exp. Neurol. 90, 611–618.

    Article  PubMed  CAS  Google Scholar 

  • Raichle M. F. (1983) The pathophysiology of brain ischimia.Ann. Neurol. 13, 2–10.

    Article  PubMed  CAS  Google Scholar 

  • Rehncrona S., Westerberg, E., Akesson B., and Siesjo B. K. (1982) Brain cortical fatty acids and phospholipids during and following complete and severe incomplete ischemia.J. Neurochem. 38, 84–93.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz J. P., Mrsulja B. B., Mrsulja B. J., Passoneau J. V., and Klatzo I. (1976) Alterations of cyclic nuclotide-related enzymes and ATPase during unilateral ischemia and recirculation in gerbil cerebral cortex.J. Neurochem. 27, 101–107.

    Article  CAS  Google Scholar 

  • Shigeno T., Mima T., Takakura K., Graham D. I., Kato G., Hashimoto Y. and Furukawa S. (1991) Amelioration of delayed neuronal death in the hippocampus by nerve growth factors.J. Neurosci. 11, 2914–2919.

    PubMed  CAS  Google Scholar 

  • Shiu G. K., Nemmer J. P., and Nemoto E. M. (1983) Reassessment of brain free fatty acid liberation during global ischemia and its attenuation by barbiturate anesthesia.J. Neurochem. 40, 880–884.

    Article  PubMed  CAS  Google Scholar 

  • Siesjo B. K. (1981) Cell damage in the brain: a speculative hypothesis.J. Cereb. Blood Flow Metabol. 1, 155–186.

    CAS  Google Scholar 

  • Sun A. Y. (1972) The effects of lipid peroxidation on synaptosomal (Na+, K+-ATPase isolated from the cerebral cortex of squirrel monkey.Biochim. Biophys. Acta 266, 350–360.

    Article  PubMed  CAS  Google Scholar 

  • Tamura A., Graham D. I., McCulloch J., and Teasdale J. M. (1981) Focal cerebral ischemia in the rat: 1 Description of technique and early neurological consequences following middle cerebral artery occlusion.J. Cereb. Blood Flow Metab. 1, 53–60.

    PubMed  CAS  Google Scholar 

  • Tanaka R. and Teruya A. (1973) Lipid dependence of activity-temperature relationship of (Na++K+)-activated ATPase.Biochim. Biophy Acta 323, 584–591.

    Article  CAS  Google Scholar 

  • Yamada K., Kinoshita A., Kohmura E., Sakaguchi T., Taguchi J., Kataoka K., and Hayakawa T. (1991) Basic fibroblast growth factor prevents thalamic degeneration after cortical infarction.J. Cereb. Blood Flow Metab. 11, 472–478.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahadik, S.P., Makar, T.K., Murthy, J.N. et al. Temporal changes in superoxide dismutase, glutathione peroxidase, and catalase levels in primary and peri-ischemic tissue. Molecular and Chemical Neuropathology 18, 1–14 (1993). https://doi.org/10.1007/BF03160018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03160018

Index Entries

Navigation