Skip to main content
Log in

Fatigue crack growth and fracture toughness properties of 304 stainless steel pipe for LNG transmission

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The fatigue crack growth rate and fracture toughness tests of type 304 stainless steel were studied over a temperature range of −162°C to room temperature. Girth weld metal specimens were fabricated using a combination of gas-tungsten-arc-welding and shielded-metal-arc-welding. The seam weld metal was made with submerged arc welding. Fatigue crack growth rate tests were conducted using compact tension specimens in accordance with ASTM E647. Fracture toughness was evaluated through CTOD tests with three point bend specimens. The CTOD values were affected by crack orientation with respect to the rolling direction, but orientation had no influence on fatigue crack growth rates. The fatigue crack growth rates and the CTOD values decreased with decreasing test temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Avery and D. Parsons,Weld. J.,74, 45 (1995).

    Google Scholar 

  2. K. Mukai, K. Hoshino and T. Fujioka,Tetsu-to-Hagane 65, 1756 (1979).

    CAS  Google Scholar 

  3. K. Tsuzaki, E. Nakanishi, T. Maki and I. Tamura,ISIJ 23, 834 (1983).

    CAS  Google Scholar 

  4. W. J. Mills,Int. Mater. Rev. 42, 45 (1997).

    CAS  Google Scholar 

  5. T. Nakamura, M. Tominaga, H. Murase and Y. Nishiyama,Tetsu-to-Hagane 68, 471 (1982).

    CAS  Google Scholar 

  6. J. Gordon and A. Hanson,An Introduction to Stainless Steel, p. 137, ASM, Metals Park, OH (1965).

    Google Scholar 

  7. Y. X. Zhao, Q. Gao and J. N. Wang,Fatigue Fract. Eng. Mater. Struct. 22, 469 (1999).

    Article  CAS  Google Scholar 

  8. A. Nishimura, R. L. Tobler, H. Tamura, S. Imagawa and J. Yamamoto,Fusion Eng. Des. 42, 425 (1998).

    Article  CAS  Google Scholar 

  9. D. T. Read, H. I. Mchenry, P. A. Steinmeyer and R. D. Thomas,Weld. J. 59, 104 (1980).

    Google Scholar 

  10. P. K. Liaw and W. A. Logsdon,Eng. Fract. Mech. 22, 585 (1985).

    Article  Google Scholar 

  11. D. A. Jones,Principles and Prevention of Corrosion, p. 291, Macmillian Publ. Co., New York, NY (1992).

    Google Scholar 

  12. J. E. Strawley,Int. J. Fract. 12, 475 (1976).

    Google Scholar 

  13. P. C. Paris, M. P. Gomez and W. E. Anderson,The Trend in Engineering 13, 9 (1961).

    Google Scholar 

  14. R. Ogawa and J. W. Moris,ASTM STP 857, 47 (1985).

    CAS  Google Scholar 

  15. B. I. Verkin, N. M. Grinberg, V. A. Serdyuk and L. F. Yakovenko,Mater. Sci. Eng. 58, 145 (1983).

    Article  Google Scholar 

  16. T. Kawasaki, S. Nakanishi, Y. Sawaki. K. Hatanaka and T. Yokobori,Eng. Frac. Mech. 7, 465 (1975).

    Article  CAS  Google Scholar 

  17. Fracture Mechanics Toughness Tests, British Standard BS 7448, Part 1 (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, JH., Kim, CM., Kim, WS. et al. Fatigue crack growth and fracture toughness properties of 304 stainless steel pipe for LNG transmission. Met. Mater. Int. 7, 579–585 (2001). https://doi.org/10.1007/BF03179257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179257

Keywords

Navigation