Skip to main content
Log in

Pathogenesis of Graves’ orbitopathy: A 2010 update

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2010

Abstract

The most important of the extra-thyroidal manifestations of Graves’ disease, Graves’ orbitopathy (GO), remains a vexing clinical problem. Treatment of severe active disease has been limited to steroids or radiotherapy. In the relatively rare case where vision is threatened, emergent decompression surgery can be performed. The proptosis, motility, or cosmetic concerns associated with stable GO are commonly remedied with surgical intervention. Substantial obstacles have prevented the development of specific medical therapies for GO, in large part resulting from poor understanding of disease pathogenesis and the absence of preclinical animal models. Fundamental aspects of GO’s etiology have been uncovered from studies based in cell culture, extensive analysis of blood constituents, and detailed examination of orbital contents collected at the time of surgical intervention. Many of the published reports resulting from these studies are descriptive and all have failed to yield unifying concepts that integrate the anatomically divergent manifestations of Graves’ disease. This brief review covers recent findings of several research groups. While major breakthroughs continue to occur in closely related autoimmune diseases, progress in identifying the pathogenic mechanisms relevant to GO has been limited. As emerging insights into human autoimmunity becomes applied to the study of Graves’ disease, we anticipate that improved therapeutic strategies will find their way to our patients with GO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the Pathogenesis of Graves’ disease and ophthalmopathy. Endocr Rev 2003, 24: 802–35.

    Article  PubMed  CAS  Google Scholar 

  2. Parmentier M, Libert F, Maenhaut C, et al. Molecular cloning of the thyrotropin receptor. Science 1989, 246: 1620–2.

    Article  PubMed  CAS  Google Scholar 

  3. McKenzie JM. Humoral factors in the pathogenesis of Graves’ disease. Physiol Rev 1968, 48: 252–309.

    PubMed  CAS  Google Scholar 

  4. Feliciello A, Porcellini A, Ciullo I, Bonavolontà G, Avvedimento EV, Fenzi G.. Expression of thyrotropin-receptor mRNA in healthy and Graves’ disease retro-orbital tissue. Lancet 1993, 342: 337–8.

    Article  PubMed  CAS  Google Scholar 

  5. Heufelder AE, Dutton CM, Sarkar G, Donovan KA, Bahn RS. Detection of TSH receptor RNA in cultured fibroblasts from patients with Graves’ ophthalmopathy and pretibial dermopathy. Thyroid 1993, 3: 297–300.

    Article  PubMed  CAS  Google Scholar 

  6. Chang TC, Wu SL, Hsiao YL, et al. TSH and TSH receptor antibody-binding sites in fibroblasts of pretibial myxedema are related to the extracellular domain of entire TSH receptor. Clin Immunol Immunopathol 1994, 71: 113–20.

    Article  PubMed  CAS  Google Scholar 

  7. Endo T, Ohno M, Kotani S, Gunji K, Onaya T. Thyrotropin receptor in non-thyroid tissues. Biochem Biophys Res Commun 1993, 190: 774–9.

    Article  PubMed  CAS  Google Scholar 

  8. Cianfarani F, Baldini E, Cavalli A, et al. TSH receptor and thyroid-specific gene expression in human skin. J Invest Dermatol 2010, 130: 93–101.

    Article  PubMed  CAS  Google Scholar 

  9. Wu SL, Yang CS, Wang HJ, Liao CL, Chang TJ, Chang TC. Demonstration of thyrotropin receptor mRNA in orbital fat and eye muscle tissues from patients with Graves’ ophthalmopathy by in situ hybridization. J Endocrinol Invest 1999, 22: 289–95.

    Article  PubMed  CAS  Google Scholar 

  10. Paschke R, Vassart G, Ludgate M. Current evidence for and against the TSH receptor being the common antigen in Graves’ disease and thyroid associated ophthalmopathy. Clin Endocrinol 1995, 42: 565–9.

    Article  CAS  Google Scholar 

  11. Bell A, Gagnon A, Grunder L, Parikh SJ, Smith TJ, Sorisky A. Functional TSH receptor in human abdominal preadipocytes and orbital fibroblasts. Am J Physiol Cell Physiol 2000, 279: C335–40.

    PubMed  CAS  Google Scholar 

  12. Agretti P, Chiovato L, De Marco G, et al. Real-time PCR provides evidence for thyrotropin receptor mRNA expression in orbital as well as in extraorbital tissues. Eur J Endocrinol 2002, 147: 733–9.

    Article  PubMed  CAS  Google Scholar 

  13. Haraguchi K, Shimura H, Kawaguchi A, Ikeda M, Endo T, Onaya T. Effects of thyrotropin on the proliferation and differentiation of cultured rat preadipocytes. Thyroid 1999, 9: 613–9.

    Article  PubMed  CAS  Google Scholar 

  14. Wang HC, Dragoo J, Zhou Q, Klein JR. An intrinsic thyrotropin-mediated pathway of TNF-α production by bone marrow cells. Blood 2003, 101: 119–23.

    Article  PubMed  CAS  Google Scholar 

  15. Endo T, Ohta K, Haraguchi K, Onaya T. Cloning and functional expression of a thyrotropin receptor cDNA from rat fat cells. J Biol Chem 1995, 270: 10833–7.

    Article  PubMed  CAS  Google Scholar 

  16. Weightman DR, Perros P, Sherif IH, Kendall-Taylor P. Autoantibodies to IGF-1 binding sites in thyroid associated ophthalmopathy. Autoimmunity 1993, 16: 251–7.

    Article  PubMed  CAS  Google Scholar 

  17. Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ. Immunoglobulin Activation of T cell chemoattractant expression in fibroblasts from patients with Graves’ disease Is mediated through the insulin-like growth factor I receptor pathway. J Immunol 2003, 170: 6348–54.

    Article  PubMed  CAS  Google Scholar 

  18. Pritchard J, Horst N, Cruikshank W, Smith TJ. Igs from patients with Graves’ disease induce the expression of T cell chemoattractants in their fibroblasts. J Immunol 2002, 168: 942–50.

    Article  PubMed  CAS  Google Scholar 

  19. Center DM, Cruikshank W. Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells. J Immunol 1982, 128: 2563–8.

    PubMed  CAS  Google Scholar 

  20. Simchen C, Lehmann I, Sittig D, Steinert M, Aust G. Expression and regulation of regulated on activation, normal T cells expressed and secreted in thyroid tissue patients with Graves’ disease and thyroid autonomy and in thyroid-derived cell populations. J Clin Endocrinol Metab 2000, 85: 4758–64.

    PubMed  CAS  Google Scholar 

  21. Smith TJ, Hoa N. Immunoglobulins from patients with Graves’ disease induce hyaluronan synthesis in their orbital fibroblasts through the self-antigen, insulin-like growth factor-I receptor. J Clin Endocrinol Metab 2004, 89: 5076–80.

    Article  PubMed  CAS  Google Scholar 

  22. Arbogast B, Hopwood JJ, Dorfman A. Absence of hyaluronidase in cultured human skin fibroblasts. Biochem Biophys Res Commun 1975, 67: 376–82.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang ZG, Wall JR, Bernard NF. Identification of antigenic epitopes of 1D antigen recognized by antibodies in the serum of patients with thyroid-associated ophthalmopathy. Clin Immunol Immunopathol 1995, 77: 193–200.

    Article  PubMed  CAS  Google Scholar 

  24. Gopinath B, Ma G, Wall JR. Eye signs and serum eye muscle and collagen XIII antibodies in patients with transient and progressive thyroiditis. Thyroid 2007, 17: 1123–9.

    Article  PubMed  CAS  Google Scholar 

  25. Mizokami T, Salvi M, Wall JR. Eye muscle antibodies in Graves’ ophthalmopathy: pathogenic or secondary epiphenomenon? J Endocrinol Invest 2004, 27: 221–9.

    Article  PubMed  CAS  Google Scholar 

  26. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2002, 2: 85–95.

    Article  PubMed  CAS  Google Scholar 

  27. Smith TJ, Koumas L, Gagnon A, et al. Orbital fibroblast heterogeneity may determine the clinical presentation of thyroid-associated ophthalmopathy. J Clin Endocrinol Metab 2002, 87: 385–92.

    Article  PubMed  CAS  Google Scholar 

  28. Koumas L, Smith TJ, Phipps RP. Fibroblast subsets in the human orbit: Thy-1+ and Thy-1— subpopulations exhibit distinct phenotypes. Eur J Immunol 2002, 32: 477–85.

    Article  PubMed  CAS  Google Scholar 

  29. Sorisky A, Pardasani D, Gagnon A, Smith TJ. Evidence of adipocyte differentiation in human orbital fibroblasts in primary culture. J Clin Endocrinol Metab 1996, 81: 3428–31.

    PubMed  CAS  Google Scholar 

  30. Valyasevi RW, Erickson DZ, Harteneck DA, et al. Differentiation of human orbital preadipocyte fibroblasts induces expression of functional thyrotropin receptor. J Clin Endocrinol Metab 1999, 84: 2557–62.

    PubMed  CAS  Google Scholar 

  31. Tsui S, Naik V, Hoa N, et al. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in Graves’ disease. J Immunol 2008, 181: 4397–405.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Douglas RS, Afifiyan NF, Hwang CJ, et al. Increased generation of fibrocytes in thyroid-associated ophthalmopathy. J Clin Endocrinol Metab 2010, 95: 430–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994, 1: 71–81.

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 2004, 36: 598–606.

    Article  PubMed  CAS  Google Scholar 

  35. Tomlinson JW, Durrani OM, Bujalska IJ, et al. The role of 11 beta-hydroxysteroid dehydrogenase 1 in adippogenesis in thyroid-associated ophthalmopathy. J Clin Endocrinol Metab 2010, 95: 398–406.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang L, Bowen T, Grennan-Jones F, et al. Thyrotropin receptor activation increases hyaluronan production in preadipocyte fibroblasts: contributory role in hyaluronan accumulation in thyroid dysfunction. J Biol Chem 284: 26447–55.

  37. Douglas RS, Gianoukakis AG, Kamat S, Smith TJ. Aberrant expression of the insulin-like growth factor-1 receptor by T cells from patients with Graves’ disease may carry functional consequences for disease pathogenesis. J Immunol 2007, 178: 3281–7.

    Article  PubMed  CAS  Google Scholar 

  38. Douglas RS, Naik V, Hwang CJ, et al. B Cells from patients with Graves’disease aberrantly express the IGF-1 receptor: implications for disease pathogenesis. J Immunol 2008, 181: 5768–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Douglas RS, Brix TH, Hwang CJ, Hegedus L, Smith TJ. Divergent frequencies of IGF-1 receptor-expressing blood lymphocytes in monozygotic twin pairs discordant for Graves’ disease: Evidence for a phenotypic signature ascribable to nongenetic factors. J Clin Endocrinol Metab 2009, 94: 1797–802.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Smith TJ. Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases? Pharmacol Rev 2010, 62: 199–236.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Tallstedt L, Lundell G, Tørring O, et al. Occurrence of ophthalmopathy after treatment for Graves’ hyperthyroidism. N Engl J Med 1992, 326: 1733–8.

    Article  PubMed  CAS  Google Scholar 

  42. Bartalena L, Marcocci C, Bogazzi F, et al. Relation between therapy for hyperthyroidism and the course of Graves’ ophthalmopathy. N Engl J Med 1998, 338: 73–8.

    Article  PubMed  CAS  Google Scholar 

  43. Träisk F, Tallstedt L, Abraham-Nordling M, et al; Thyroid Study Group of TT 96. Thyroid-associated ophthalmopathy after treatment for Graves’ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab 2009, 94: 3700–7.

    Article  PubMed  CAS  Google Scholar 

  44. Vannucchi G, Campi I, Covelli D, et al. Graves’ orbitopathy activation after radioactive iodine therapy with and without steroid prophylaxis. J Clin Endorcrinol Metab 2009, 94: 3381–6.

    Article  CAS  Google Scholar 

  45. Lai A, Sassi L, Compri E, et al. Lower dose prednisone prevents ra-dioiodine-associated exacerbation of initially mild or absent graves’ orbitopathy: a retrospective cohort study. J Clin Endocrinol Metab 2010, 95: 1333–7.

    Article  PubMed  CAS  Google Scholar 

  46. Stiebel-Kalish H, Robenshtok E, Hasanreisoglu M, Ezrachi D, Shimon I, Leibovici L. Treatment modalities for Graves’ ophthalmopathy: systematic review and meta-analysis. J Clin Endocrinol Metab 2009, 94: 2708–16.

    Article  PubMed  CAS  Google Scholar 

  47. Goldbach-Mansky R, Lipsky PE. New concepts in the treatment of rheumatoid arthritis. Annu Rev Med 2003, 54: 197–216.

    Article  PubMed  CAS  Google Scholar 

  48. Kapadia MK, Rubin PA. The emerging use of TNF-alpha inhibitors in orbital inflammatory disease. Int Ophthalmol Clin 2006, 46: 165–81.

    Article  PubMed  Google Scholar 

  49. Hagemeister F. Rituximab for the treatment of non-Hodgkin’s lymphoma and chronic lymphocytic leukaemia. Drugs 2010, 70: 261–72.

    Article  PubMed  CAS  Google Scholar 

  50. Dorner T, Radbruch A, Burmester GR. B-cell-directed therapies for autoimmune disease. Nat Rev Rheumatol 2009, 5: 433–41.

    Article  PubMed  CAS  Google Scholar 

  51. El Fassi D, Nielsen CH, Hasselbalch HC, Hegedüs L. The rationale for B lymphocyte depletion in Graves’ disease. Monoclonal anti-CD20 antibody therapy as a novel treatment option. Eur J Endocrinol 2006, 154: 623–32.

    Article  PubMed  CAS  Google Scholar 

  52. El Fassi D, Nielsen CH, Bonnema SJ, Hasselbalch HC, Hegedus L. B lymphocyte depletion with a monoclonal antibody rituximab in Graves’ disease: a controlled pilot study. J Clin Endocrinol Metab 2007, 92: 1769–72.

    Article  PubMed  CAS  Google Scholar 

  53. Salvi M, Vannucchi G, Campi I, et al. Efficacy of rituximab treatment for thyroid-associated ophthalmopathy as a result of intraorbital B-cell depletion in one patient unresponsive to steroid immunosuppression. Eur J Endocrinol 2006, 154: 511–7.

    Article  PubMed  CAS  Google Scholar 

  54. Nielsen J F, El Fassi D, Nielsen CH, et al. Evidence of orbital B and T cell depletion after rituximab therapy in Graves’ ophthalmopathy. Acta Ophthalmologic 2009, 87: 927–9.

    Article  Google Scholar 

  55. El Fassi D, Nielsen CH, Hasselbalch HC, Hegedus L. Treatment-resistant severe, active Graves’ ophthalmopathy successfully treated with B lymphocyte depletion. Thyroid 2006, 16: 709–10.

    Article  PubMed  Google Scholar 

  56. Salvi M, Vannucchi G, Campi I, et al. Treatment of Graves’ disease and associated ophthalmopathy with the anti-CD20 monoclonal antibody rituximab: an open study. Eur J Endocrinol 2007, 156: 33–40.

    Article  PubMed  CAS  Google Scholar 

  57. Khanna D, Chong KK, Afifiyan NF, et al. Rituximab treatment of patients with severe, corticosteroid-resistant thyroid-associated ophthalmopathy. Ophthalmology 2010, 117: 133–9.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Krassas GE, Stafilidou A, Boboridis KG. Failure of rituximab treatment in a case of severe thyroid ophthalmopathy unresponsive to steroids. Clin Endocrinol (Oxf) 2010, 72: 853–5.

    Article  CAS  Google Scholar 

  59. Smith TJ. B cell depletion in Graves’ disease: the right answer to the wrong question? J Clin Endocrinol Metab 2007, 92: 1620–2.

    Article  PubMed  CAS  Google Scholar 

  60. Heemstra KA, Toes RE, Sepers J, et al. Rituximab in relapsing Graves’ disease, a phase II study. Eur J Endocrinol 2008, 159: 609–15.

    Article  PubMed  CAS  Google Scholar 

  61. El Fassi D, Banga JP, Gilbert JA, Padoa C, Hegedüs L, Nielsen CH. Treatment of Graves’ disease with rituximab specifically reduces the production of thyroid stimulating autoantibodies. Clin Immunol 2009,130: 252–8.

    Article  PubMed  CAS  Google Scholar 

  62. Bahn RS. Graves’ Ophthalmopathy. N Engl J Med 2010, 362: 726–38.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Douglas RD, Tsirbas A, Gordon M, et al; International Thyroid Eye Disease Society. Devleopment of criteria for evaluating clinical response in thyroid eye disease using a modified Delphi technique. Arch Ophthalmol 2009, 127: 1115–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Smith MD.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03346638.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, T.J. Pathogenesis of Graves’ orbitopathy: A 2010 update. J Endocrinol Invest 33, 414–421 (2010). https://doi.org/10.1007/BF03346614

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346614

Keywords

Navigation