Skip to main content
Log in

Modellierung von Fehlkonzepten in einer algebraischen Wissensstruktur

Modeling misconceptions in an algebraic knowledge structure

  • Published:
Kognitionswissenschaft

Abstract

An extension of the theory of knowledge spaces by Doignon & Falmagne (1985) is presented that tries to account for subjects’ typical errors and wrong answers. This extension concerns two major points: The usual dichotomous item format (right/wrong) is generalized to polytomous response categories, and the theoretical structure (knowledge, skills, misconceptions) is clearly separated from the empirical structure (observable solution behavior, subject’s responses). Using examples from a set of questions about properties of simple electric circuits the general method is demonstrated. Axioms of an algebraic structure known as “information system” (Scott, 1982) are shown to provide an appropriate characterization of the theoretical domain. The structural properties of the data, on the other hand, can be derived from assumptions about the influence of knowledge and misconceptions on specific answers for a set of questions.

Zusammenfassung

Die Theorie der Wissensstrukturen nach Doignon & Falmagne (1985) wird so erweitert, daß sich damit auch typische Fehler von Probanden modellieren lassen. Die Erweiterung betrifft vor allem zwei Punkte: (a) die Verallgemeinerung der dichotomen Antwortkategorien (richtig/falsch) auf mehrere Antwortalternativen und (b) die explizite Trennung von theoretischer Struktur (Wissen, skills, Lösungsheuristiken, Fehlkonzepte etc.) und empirischer Struktur (Aufgabenbeantwortung, Lösungsvektoren, beobachtbares Antwortverhalten). Für die theoretische Struktur liefert die Axiomatik der sogenannten Informationssysteme (Scott, 1982) eine geeignete algebraische Charakterisierung. Die empirische Struktur läßt sich aus Annahmen über den Zusammenhang von Wissen und Antwortverhalten ableiten. Anhand von Aufgaben aus dem Wissensbereich „Elementarphysik einfacher elektrischer Stromkreise“ wird die Vorgehensweise exemplarisch dargestellt

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Albert, D. (ed.) (1994) Knowledge Structures. New York: Springer

    Book  Google Scholar 

  • Bauman, R. P. & Adams, S. (1990) Misunderstandings of electric current. The Physics Teacher 28, 334

    Article  Google Scholar 

  • Chen, H. & Dhar, V. (1990) User misconceptions of information retrieval systems. International Journal of Man-Machine Studies 32, 673–692

    Article  Google Scholar 

  • Chomsky, N. (1965) Aspects of the theory of syntax. Cambridge, MA: MIT Press

    Google Scholar 

  • Clement, J. (1983) A conceptual model discussed by Galileo and used intuitively by physics students. In: D. Genter & A.L. Stevens (eds.), Mental Models (pp. 325–340). London: Lawrence Erlbaum Associates

    Google Scholar 

  • Davey, B. A. & Priestley, H. A. (1990) Introduction to lattices and order. Cambridge: Cambridge University Press

    MATH  Google Scholar 

  • Doignon, J.-P. & Falmagne, J.-C. (1985) Spaces for the assessment of knowledge. International Journal of Man-Machine Studies 23, 175–196

    Article  MATH  Google Scholar 

  • Dowling, C. E. (1993) Applying the basis of knowledge spaces for controlling the questioning of an expert. Journal of Mathematical Psychology 37, 21–48

    Article  MathSciNet  MATH  Google Scholar 

  • Dowling, C. E., Hockemeyer, C. & Ludwig, A. H. (1996) Adaptive assessment and training using the neighbourhood of knowledge states. In: C. Frasson, G. Gauthier & A. Lesgold (eds.), Intelligent Tutoring Systems (pp. 578–586) Berlin: Springer

    Chapter  Google Scholar 

  • Droste, M. & Göbel, R. (1990) Non-deterministic information systems and their domains. Theoretical Computer Science 75, 289–309

    Article  MathSciNet  MATH  Google Scholar 

  • Duit, R., Jung, W. & Rhöneck, C. von (1985) Aspects of understanding electricity. Proceedings of an international workshop in Ludwigsburg, 1984. Kiel: Schmidt & Klaunig

    Google Scholar 

  • Falmagne, J.-C. (1993) Stochastic learning paths in a knowledge structure. Journal of Mathematical Psychology 37, 489–512

    Article  MathSciNet  MATH  Google Scholar 

  • Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P. & Johannesen, L. (1990) Introduction to knowledge spaces: how to build, test and search them. Psychological Review 97, 201–224

    Article  Google Scholar 

  • Gauld, C. F. (1988) The cognitive context of pupils’ alternative frameworks. International Journal of Science Education 10, 267–274

    Article  Google Scholar 

  • Gentner, D. & Gentner, D. R. (1983) Flowing waters or teeming crowds: Mental models of electricity. In: D. Gentner & A.L. Stevens (eds.), Mental Models (pp. 99–129) London: Lawrence Erlbaum Associates

    Google Scholar 

  • Heines, J. M. & O’Shea, T. (1985) The design of a rule-based CAI tutorial. International Journal of Man-Machine Studies 23, 1–25

    Article  Google Scholar 

  • Held, T. (in Druck) An integrated approach for constructing, coding, and structuring a body of word problems. In: D. Albert & J. Lukas (eds.), Knowledge spaces: Theories, empirical research, applications. Hillsdale, NJ: Lawrence Erlbaum Associates

  • Koppen, M. & Doignon, J.-P. (1990) How to build a knowledge space by querying an expert. Journal of Mathematical Psychology 34, 311–331

    Article  MathSciNet  MATH  Google Scholar 

  • Korossy, K. (1993) Modellierung von Wissen als Kompetenz und Performanz. Unveröffentlichte Dissertation, Universität Heidelberg

    Google Scholar 

  • Korossy, K. (1996) Kompetenz und Performanz beim Lösen von Geometrieaufgaben. Zeitschrift für experimentelle Psychologie 43, 279–318

    Google Scholar 

  • Lukas, J. & Albert, D. (1993) Knowledge assessment based on skill assignment and psychological task analysis. In: G. Strube & K. F. Wender (eds.), The cognitive psychology of knowledge (pp. 139–159) Amsterdam: Elsevier (North-Holland)

    Chapter  Google Scholar 

  • Maichle, U. (1985) Wissen, Verstehen und Problemlösen im Bereich der Physik. Frankfurt/Main: Peter Lang

    Google Scholar 

  • McCloskey, M. (1983) Naive Theories of Motion. In: D. Gentner & A.L. Stevens (eds.), Mental Models (pp. 299–324) London: Lawrence Erlbaum Associates

    Google Scholar 

  • Narciss, S. (in Druck) Application of Doignon and Falmagne’s theory of knowledge spaces to the assessment of motor learning processes. In: D. Albert & J. Lukas (eds.), Knowledge spaces: Theories, empirical research, applications. Hillsdale, NJ: Lawrence Erlbaum Associates

  • Nilson, N. J. (1971) Problem-solving methods in artificial intelligence. New York: Mc Graw-Hill

    Google Scholar 

  • Novak, J. (ed.) (1987) Proceedings of the 2. International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. (Vol. 1–3). Ithaca, NY: Cornell University

    Google Scholar 

  • Pfundt, H. & Duit, R. (1991) Bibliographie Alltagsvorstellungen und naturwissenschaftlicher Unterricht (3. Auflage) Kiel: Institut für die Pädagogik der Naturwissenschaften

    Google Scholar 

  • Schrepp, M. (1995) Modeling interindividual differences in solving letter series completion problems. Zeitschrift für Psychologie 203, 173–188

    Google Scholar 

  • Scott, D. (1982) Domains for denotational semantics. In: M. Nielsen & E. M. Schmidt (eds.), Automata, Languages, and Programming (pp. 577–613) Heidelberg: Springer. (Lecture Notes in Computer Science, 140)

    Chapter  Google Scholar 

  • Sleeman, D. H. (1986) Inferring (mal)rules from pupil’s protocols. In: L. Steels & J. A. Campbell (eds.), Progress in artificial intelligence. Chichester, Sussex: Ellis Horwood

    Google Scholar 

  • Stumme, G. (1996) Exploration tools in formal concept analysis. In: E. Diday, Y. Lechevallier & O. Opitz (eds.), Ordinal and symbolic data analysis (pp. 31–44) Berlin: Springer

    Chapter  Google Scholar 

  • VanLehn, K. (1990) Mind bugs: The origins of procedural misconceptions. Cambridge, MA: MIT Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Lukas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukas, J. Modellierung von Fehlkonzepten in einer algebraischen Wissensstruktur. Kognit. Wiss. 6, 196–204 (1997). https://doi.org/10.1007/BF03354921

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354921

Navigation