Skip to main content
Log in

Serotonin inhibits ciliary transport in esophagus of the nudibranch mollusk, Tritonia diomedea

  • Published:
Acta Biologica Hungarica Aims and scope Submit manuscript

Abstract

Both serotonin and the molluskan pedal neuropeptides (TPEPs) cause increased ciliary beating rate of cells of the foot epithelium of the nudibranch mollusk, Tritonia diomedea. Here we compared responses of the ciliated epithelium of the esophagus with that of the foot, and report fundamental differences. Serotonin reduces the ciliary transport rate of the esophagus. We find also that the serotonin driven inhibition of esophagus is blocked and the excitation of foot epithelium is reduced by the serotonin receptor blocker ketanserin. On the contrary, ergometrine completely blocked the serotonin effect in the esophagus, and does not block the serotonin effect in the foot. Neither the TPEP driven excitation of ciliated cells of the foot nor that of the esophagus is blocked by ketanserin and ergometrine. Clearly, serotonin and TPEP regulation of different ciliated epithelia involve different receptors. Thus, mechanisms of serotonin control of different ciliated epithelia in the same animal are apparently fundamentally different, and unlike responses in all previous reports, 5HT here inhibits a ciliated epihelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiello, E., Hager, E., Akiwumi, C., Stefano, G. B. (1986) An opioid mechanism modulates central and not peripheral dopaminergic control of ciliary activity in the marine mussel Mytilus edulis. Cell Mol. Neurobiol. 6, 17–30.

    Article  CAS  Google Scholar 

  2. Arkett, S. A. (1987) Ciliary arrest controlled by identified central neurones in a urochordate(Ascidiacea). J. comp. Physiol. 161A, 837–847.

    Article  Google Scholar 

  3. Arkett, S. A., Mackie, G. O., Singla, C. L. (1987) Neuronal control of ciliary locomotion in a gastropod veliger (Calliostoma). Biol. Bull. 173, 513–526.

    Article  CAS  Google Scholar 

  4. Audesirk, G. J. (1978) Central neuronal control of cilia in Tritonia diomedea. Nature 272, 541–543.

    Article  CAS  Google Scholar 

  5. Audesirk, G. (1978) Properties of central motor neurons exciting locomotory cilia in Tritonia diomedea. J. comp. Physiol. 128, 259–267.

    Article  Google Scholar 

  6. Audesirk, G. J., McCaman, R. E., Willows, A. O. D. (1979) The role of serotonin in the control of pedal ciliary activity by identified neurons inTritonia diomedea. Comp. Biochem. Physiol. 62C, 87–91.

    CAS  Google Scholar 

  7. Buznikov, G. A., Manukhin, B. N. (1962) The effect of serotonin on motor activity of nudibranch embryos. Zh. Obshch. Biol. 21, 347–352.

    Google Scholar 

  8. Chia, F. S., Buckland-Nicks, J., Young, C. M. (1984) Locomotion of marine invertebrate larvae: a review. Can. J. Zool. 62, 1205–1222.

    Article  Google Scholar 

  9. Cragg, S. M. (1980) Swimming behavior of the larvae of Pecten maximus (L.) (Bivalvia). J. Mar. Biol. Assoc. U. K. 60, 551–564.

    Article  Google Scholar 

  10. Deliagina, T. G., Orlovsky, G. N. (1990) Control of locomotion in the freshwater snail Planorbis corneus. II. Differential control of various zones of the ciliated epithelium. J. exp. Biol. 152, 405–423.

    Google Scholar 

  11. Gaston, M. R. (1998) Neuropeptide TPep action on salivary duct ciliary beating rate in the nudibranch mollusc Tritonia diomedea. Invert. Neurosci. 3, 327–333.

    Article  CAS  Google Scholar 

  12. Goldberg, J. I., Koehncke, N. K., Christopher, K. J., Neumann, C., Diffenbach, T. J. (1994) Pharmacological characterization of a serotonin receptor involved in an early embryonic behavior of Helisoma trivolvis. J. Neurobiol 25, 1545–1557.

    Article  CAS  Google Scholar 

  13. Gray, J. (1928) Ciliary Movement. Univ. Press Cambridge.

    Google Scholar 

  14. Hall, J. D., Lloyd, P. E. (1990) Involvement of pedal peptide in locomotion in Aplysia: modulation of foot muscle contractions. J. Neurobiol. 21, 858–868.

    Article  CAS  Google Scholar 

  15. Holley, M. C., Shelton, G. A. B. (1984) Reversal of the direction of mucus-flow on the ciliated pharynx of a sea anemone. J. exp. Biol. 108, 151–161.

    Google Scholar 

  16. Jorgensen, C. B. (1975a) On gill function in mussel Mytilus edulis. Ophelia 13, 187–232.

    Article  Google Scholar 

  17. Jorgensen, C. B. (1975b) Comparative physiology of suspension feeding. Ann. Rev. Physiol. 37, 57–79.

    Article  CAS  Google Scholar 

  18. Koshtoyants, K. S., Buznikov, G. A., Manukhin, B. N. (1961) The possible role of 5-hydroxytryptamine in the motor activity of embryos of some marine gastropods. Comp. Biochem. Physiol. 3, 20–26.

    Article  CAS  Google Scholar 

  19. Mackie, G. O., Singla, C. L., Thiriot-Quievzenk, C. (1976) Nervous control of ciliary activity in gastropod larvae. Biol. Bull. 151, 182–199.

    Article  CAS  Google Scholar 

  20. Mackey, S., Carew, T. J. (1983) Locomotion in Aplysia? Triggering by serotonin and modulation by bag cells extract. J. Neurosci. 3, 1469–1477.

    Article  CAS  Google Scholar 

  21. MacLennan, S. J., Martin, G. R. (1990) Actions of non-peptide ergot alkaloids at 5-HT1-like and 5-HT2 receptors mediating vascular smooth muscle contraction. Naynun Schmiedebergs Arch. Pharmacol. 342, 120–129.

    Article  CAS  Google Scholar 

  22. Paparo, A., Aiello, E. (1970) Cilioinhibitory effects of branchial nerve stimulation in the mussel Mytilus edulis. Comp. Gen. Pharmacol. 1, 241–250.

    Article  CAS  Google Scholar 

  23. Paparo, A., Hamburg, M. D., Cole, E. H. (1975) Catecholamine influence on unit activity of the visceral ganglion of the mussel Mytilus edulis and the control of ciliary movement. Comp. Biochem. Physiol. 51C, 35–40.

    Google Scholar 

  24. Pavlova, G. A. (1997) Effect of serotonin on locomotion in the freshwater mollusc Lymnaea stagnalis. Zh. Evol Biokhim. Fiziol 33, 599–606.

    Google Scholar 

  25. Stommel, E. (1984) Calcium regenerative potentials in Mytilus edulis gill abfrontal ciliated epithelial cells. J. comp. Physiol. 155A, 445–456.

    Article  Google Scholar 

  26. Syed, N., Harrison, D., Winlow, W. (1988) Locomotion in Lymnaea – role of seronergic motoneurons controlling the pedal cilia. Symp. Biol Hung. 36, 387–399.

    Google Scholar 

  27. Willows, A. O. D., Pavlova, G. A., Phillips, N. E. (1997) Modulation of ciliary beat frequency by neuropeptides from identified molluscan neurons. J. exp. Biol 200, 1433–1439.

    PubMed  CAS  Google Scholar 

  28. Willows, A. O. D., Pavlova, G. A., Phillips, N. E. (1998) Effects of Tritonia neuropeptides and serotonin on ciliary activity. Dokl Akad. Nauk 358, 839–841.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. D. Willows.

Additional information

Dedicated to Professor János Salánki for his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlova, G.A., Willows, A.O.D. & Gaston, M.R. Serotonin inhibits ciliary transport in esophagus of the nudibranch mollusk, Tritonia diomedea. BIOLOGIA FUTURA 50, 175–184 (1999). https://doi.org/10.1007/BF03543040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03543040

Keywords

Navigation