Skip to main content
Log in

Search for the Higgs portal to a singlet fermionic dark matter at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider a simple extension of the standard model with a singlet fermionic dark matter. Its thermal relic density can be easily accommodated by a real singlet scalar messenger that mixes with the standard model Higgs boson. The model can change significantly the Higgs signals at the LHC via sizable invisible decays of two Higgs-like scalar bosons. After imposing the constraints from the electroweak precision tests, colliders and dark matter search experiments, one concludes that two or one or none of the two Higgs bosons, depending on the mass relations among two scalar bosons and the dark matter fermion and their couplings. In particular, if a standard model Higgs-like scalar boson is discovered around 120-125 GeV region at the LHC, it would be almost impossible to find the second Higgs-like boson since it is mostly a singlet scalar, whether it is heavier or lighter. This model can be further tested by direct dark matter search experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEP Working Group for Higgs boson searches, ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, ATLAS results for the 2011 summer conferences, http://twiki.cern.ch/twiki/bin/view/AtlasPublic/AtlasResultsEPS2011.

  3. CMS collaboration, Combination of Higgs searches, CMS-PAS-HIG-11-022 (2011) [http://cms.web.cern.ch/cms/News/2011/LP11].

  4. ATLAS collaboration, Combined standard model Higgs boson searches with up to 2.3 fb −1 of pp collisions at \( \sqrt {s} = {7}\,TeV \) at the LHC, ATLAS-CONF-2011-157 (2011).

  5. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  7. C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].

    ADS  Google Scholar 

  9. Y. Mambrini, Higgs searches and singlet scalar dark matter: combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].

    ADS  Google Scholar 

  10. M. Raidal and A. Strumia, Hints for a non-standard Higgs boson from the LHC, Phys. Rev. D 84 (2011) 077701 [arXiv:1108.4903] [INSPIRE].

    ADS  Google Scholar 

  11. X.-G. He and J. Tandean, Hidden Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 84 (2011) 075018 [arXiv:1109.1277] [INSPIRE].

    ADS  Google Scholar 

  12. E. Ma, Hiding the Higgs boson from prying eyes, Phys. Lett. B 706 (2012) 350 [arXiv:1109.4177] [INSPIRE].

    ADS  Google Scholar 

  13. R.S. Gupta and J.D. Wells, Higgs boson search significance deformations due to mixed-in scalars, arXiv:1110.0824 [INSPIRE].

  14. V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the standard model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].

    ADS  Google Scholar 

  15. Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].

    ADS  Google Scholar 

  16. S. Kanemura, S. Matsumoto, T. Nabeshima and N. Okada, Can WIMP dark matter overcome the nightmare scenario?, Phys. Rev. D 82 (2010) 055026 [arXiv:1005.5651] [INSPIRE].

    ADS  Google Scholar 

  17. N. Okada and O. Seto, Higgs portal dark matter in the minimal gauged U(1) BL model, Phys. Rev. D 82 (2010) 023507 [arXiv:1002.2525] [INSPIRE].

    ADS  Google Scholar 

  18. S. Kanemura, O. Seto and T. Shimomura, Masses of dark matter and neutrino from TeV scale spontaneous U(1) BL breaking, Phys. Rev. D 84 (2011) 016004 [arXiv:1101.5713] [INSPIRE].

    ADS  Google Scholar 

  19. S. Kanemura, T. Nabeshima and H. Sugiyama, TeV-Scale seesaw with loop-induced Dirac mass term and dark matter from U(1) BL gauge symmetry breaking, arXiv:1111.0599 [INSPIRE].

  20. M. Lindner, D. Schmidt and T. Schwetz, Dark matter and neutrino masses from global U(1) BL symmetry breaking, Phys. Lett. B 705 (2011) 324 [arXiv:1105.4626] [INSPIRE].

    ADS  Google Scholar 

  21. I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].

    ADS  Google Scholar 

  22. S. Kanemura, T. Nabeshima and H. Sugiyama, TeV-Scale seesaw with loop-induced Dirac mass term and dark matter from U(1) BL gauge symmetry breaking, arXiv:1111.0599 [INSPIRE].

  23. O. Lebedev, H.M. Lee and Y. Mambrini, Vector Higgs-portal dark matter and the invisible Higgs, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482] [INSPIRE].

    ADS  Google Scholar 

  24. S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].

    Article  ADS  Google Scholar 

  25. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].

    ADS  Google Scholar 

  26. T. Hur, D.-W. Jung, P. Ko and J.Y. Lee, Electroweak symmetry breaking and cold dark matter from strongly interacting hidden sector, Phys. Lett. B 696 (2011) 262 [arXiv:0709.1218] [INSPIRE].

    ADS  Google Scholar 

  27. T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Ko, Electroweak symmetry breaking and cold dark matter from hidden sector technicolor, Int. J. Mod. Phys. A 23 (2008) 3348 [arXiv:0801.4284] [INSPIRE].

    ADS  Google Scholar 

  29. P. Ko, Electroweak symmetry breaking and cold dark matter from hidden sector strong interaction, AIP Conf. Proc. 1178 (2009) 37 [INSPIRE].

    Article  ADS  Google Scholar 

  30. P. Ko, Electroweak symmetry breaking and cold dark matter from strongly interacting hidden sector, PoS ICHEP2010 (2010) 436 [arXiv:1012.0103] [INSPIRE].

  31. C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].

    ADS  Google Scholar 

  32. S. Baek and P. Ko, Phenomenology of U(1)(L μ  − L τ ) charged dark matter at PAMELA and colliders, JCAP 10 (2009) 011 [arXiv:0811.1646] [INSPIRE].

    Article  ADS  Google Scholar 

  33. B.W. Lee, C. Quigg and H. Thacker, The strength of weak interactions at very high-energies and the Higgs boson mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].

    Article  ADS  Google Scholar 

  34. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  35. I. Maksymyk, C. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].

    ADS  Google Scholar 

  36. N. Jarosik, C. Bennett, J. Dunkley, B. Gold, M. Greason, et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors and basic results, Astrophys. J. Suppl. 192 (2011) 14 [arXiv:1001.4744] [INSPIRE].

    Article  ADS  Google Scholar 

  37. The CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [INSPIRE].

    Article  ADS  Google Scholar 

  38. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, et al., Updated status of the global electroweak fit and constraints on new physics, arXiv:1107.0975 [INSPIRE].

  40. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicroMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. QCDSF collaboration, G. Bali et al., A lattice study of the strangeness content of the nucleon, arXiv:1112.0024 [INSPIRE].

  42. S. Baek, P. Ko and W.-I. Park, work in progress.

  43. CMS collaboration, CMS physics technical design report, volume II: physics performance, CERN-LHCC-2006-021 (2006).

  44. ATLAS collaboration, ATLAS detector and physics performance: technical design report, 2, CERN-LHCC-99-15 (1999).

  45. ATLAS collaboration, F. Gianotti, talk presented on December 13, 2011.

  46. CMS collaboration, G. Tonelli, talk presented on December 13, 2011.

  47. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, arXiv:1112.3647 [INSPIRE].

  48. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, arXiv:1112.3299 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Il Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, S., Ko, P. & Park, WI. Search for the Higgs portal to a singlet fermionic dark matter at the LHC. J. High Energ. Phys. 2012, 47 (2012). https://doi.org/10.1007/JHEP02(2012)047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)047

Keywords

Navigation