Skip to main content
Log in

Bulk stabilization, the extra-dimensional Higgs portal and missing energy in Higgs events

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

To solve the hierarchy problem, extra-dimensional models must explain why the new dimensions stabilize to the right size, and the known mechanisms for doing so require bulk scalars that couple to the branes. Because of these couplings the energetics of dimensional stabilization competes with the energetics of the Higgs vacuum, with potentially observable effects. These effects are particularly strong for one or two extra dimensions because the bulk-Higgs couplings can then be super-renormalizable or dimensionless. Experimental reach for such extra-dimensional Higgs ‘portals’ are stronger than for gravitational couplings because they are less suppressed at low-energies. We compute how Higgs-bulk coupling through such a portal with two extra dimensions back-reacts onto properties of the Higgs boson. When the KK mass is smaller than the Higgs mass, mixing with KK modes results in an invisible Higgs decay width, missing-energy signals at high-energy colliders, and new mechanisms of energy loss in stars and supernovae. Astrophysical bounds turn out to be complementary to collider measurements, with observable LHC signals allowed by existing constraints. We comment on the changes to the Higgs mass-coupling relationship caused by Higgs-bulk mixing, and how the resulting modifications to the running of Higgs couplings alter vacuum-stability and triviality bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  6. S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].

    ADS  Google Scholar 

  7. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

    ADS  Google Scholar 

  8. E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  12. H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  13. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  14. C. Burgess, J. Matias and F. Quevedo, MSLED: a minimal supersymmetric large extra dimensions scenario, Nucl. Phys. B 706 (2005) 71 [hep-ph/0404135] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Matias and C. Burgess, MSLED, neutrino oscillations and the cosmological constant, JHEP 09 (2005) 052 [hep-ph/0508156] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. Volkov and V. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

    ADS  Google Scholar 

  17. E. Ivanov and A. Kapustnikov, General relationship between linear and nonlinear realizations of supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. E. Ivanov and A. Kapustnikov, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys. G 8 (1982) 167 [INSPIRE].

    ADS  Google Scholar 

  19. S. Samuel and J. Wess, A superfield formulation of the nonlinear realization of supersymmetry and its coupling to supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Bagger and J. Wess, Partial breaking of extended supersymmetry, Phys. Lett. B 138 (1984) 105 [INSPIRE].

    ADS  Google Scholar 

  21. J. Hughes and J. Polchinski, Partially broken global supersymmetry and the superstring, Nucl. Phys. B 278 (1986) 147 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  25. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    ADS  Google Scholar 

  26. F. Coradeschi, S. De Curtis, D. Dominici and J.R. Pelaez, Modified spontaneous symmetry breaking pattern by brane-bulk interaction terms, JHEP 04 (2008) 048 [arXiv:0712.0537] [INSPIRE].

    Article  ADS  Google Scholar 

  27. G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Dominici and J.F. Gunion, Invisible Higgs decays from Higgs graviscalar mixing, Phys. Rev. D 80 (2009) 115006 [arXiv:0902.1512] [INSPIRE].

    ADS  Google Scholar 

  29. E. Dudas, C. Papineau and V. Rubakov, Flowing to four dimensions, JHEP 03 (2006) 085 [hep-th/0512276] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. C. Burgess, C. de Rham and L. van Nierop, The hierarchy problem and the self-localized Higgs, JHEP 08 (2008) 061 [arXiv:0802.4221] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Beauchemin, G. Azuelos and C. Burgess, Dimensionless coupling of bulk scalars at the LHC, J. Phys. G 30 (2004) N17 [hep-ph/0407196] [INSPIRE].

    Google Scholar 

  32. G. Azuelos, P. Beauchemin and C. Burgess, Phenomenological constraints on extra dimensional scalars, J. Phys. G 31 (2005) 1 [hep-ph/0401125] [INSPIRE].

    ADS  Google Scholar 

  33. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [INSPIRE].

    ADS  Google Scholar 

  34. G.F. Giudice, R. Rattazzi and J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders, Nucl. Phys. B 544 (1999) 3 [hep-ph/9811291] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Han, J.D. Lykken and R.-J. Zhang, On Kaluza-Klein states from large extra dimensions, Phys. Rev. D 59 (1999) 105006 [hep-ph/9811350] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. K. Lanczos, Bemerkung zur de Sitterschen Welt (in German), Phys. Z. 23 (1922) 239.

    Google Scholar 

  37. K. Lanczos, Flächenhafte Verteilung der Materie in der Einsteinschen Gravitationstheorie (in German), Ann. Phys. 379 (1924) 518.

    Article  Google Scholar 

  38. C.W. Misner and D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 (1964) B571.

    Article  MathSciNet  ADS  Google Scholar 

  39. W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuov. Cim. B 44 (1966) 1 [Erratum ibid. B 48 (1967) 463].

    ADS  Google Scholar 

  40. C. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Bayntun, C. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [INSPIRE].

    Article  ADS  Google Scholar 

  42. W.D. Goldberger and M.B. Wise, Renormalization group flows for brane couplings, Phys. Rev. D 65 (2002) 025011 [hep-th/0104170] [INSPIRE].

    ADS  Google Scholar 

  43. T. Kobayashi, UV caps, IR modification of gravity and recovery of 4D gravity in regularized braneworlds, Phys. Rev. D 78 (2008) 084018 [arXiv:0806.0924] [INSPIRE].

    ADS  Google Scholar 

  44. C. de Rham, The effective field theory of codimension-two branes, JHEP 01 (2008) 060 [arXiv:0707.0884] [INSPIRE].

    Article  Google Scholar 

  45. C. de Rham, Classical renormalization of codimension-two brane couplings, AIP Conf. Proc. 957 (2007) 309 [arXiv:0710.4598] [INSPIRE].

    Article  ADS  Google Scholar 

  46. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Burgess and L. van Nierop, Large dimensions and small curvatures from supersymmetric brane back-reaction, JHEP 04 (2011) 078 [arXiv:1101.0152] [INSPIRE].

    Article  ADS  Google Scholar 

  48. H. Nishino and E. Sezgin, Matter and gauge couplings of N = 2 supergravity in six-dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. H. Nishino and E. Sezgin, The complete N = 2, D = 6 supergravity with matter and Yang-Mills couplings, Nucl. Phys. B 278 (1986) 353 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. S. Randjbar-Daemi, A. Salam, E. Sezgin and J. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B 151 (1985) 351 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. A. Salam and E. Sezgin, Chiral compactification on Minkowski X S 2 of N = 2 Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. Y. Aghababaie, C. Burgess, S. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. C. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [INSPIRE].

    Article  ADS  Google Scholar 

  54. C. Burgess and L. van Nierop, Bulk axions, brane back-reaction and fluxes, JHEP 02 (2011) 094 [arXiv:1012.2638] [INSPIRE].

    Article  ADS  Google Scholar 

  55. C. Burgess, Supersymmetric large extra dimensions and the cosmological constant: an update, Annals Phys. 313 (2004) 283 [hep-th/0402200] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  56. C. Burgess, Towards a natural theory of dark energy: supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C. Burgess and D. Hoover, UV sensitivity in supersymmetric large extra dimensions: the Ricci-flat case, Nucl. Phys. B 772 (2007) 175 [hep-th/0504004] [INSPIRE].

    Article  ADS  Google Scholar 

  58. D. Hoover and C. Burgess, Ultraviolet sensitivity in higher dimensions, JHEP 01 (2006) 058 [hep-th/0507293] [INSPIRE].

    Article  ADS  Google Scholar 

  59. C. Burgess, D. Hoover and G. Tasinato, Technical naturalness on a codimension-2 brane, JHEP 06 (2009) 014 [arXiv:0903.0402] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. M. Williams, C. Burgess, L. van Nierop and A. Salvio, Running with rugby balls: bulk renormalization of codimension-2 branes, JHEP 01 (2013) 102 [arXiv:1210.3753] [INSPIRE].

    Article  ADS  Google Scholar 

  61. C. Burgess, L. van Nierop, S. Parameswaran, A. Salvio and M. Williams, Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction, JHEP 02 (2013) 120 [arXiv:1210.5405] [INSPIRE].

    Article  ADS  Google Scholar 

  62. F. Leblond, Geometry of large extra dimensions versus graviton emission, Phys. Rev. D 64 (2001) 045016 [hep-ph/0104273] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  63. G. Gibbons, R. Güven and C. Pope, 3-branes and uniqueness of the Salam-Sezgin vacuum, Phys. Lett. B 595 (2004) 498 [hep-th/0307238] [INSPIRE].

    ADS  Google Scholar 

  64. Y. Aghababaie et al., Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. C. Burgess, F. Quevedo, G. Tasinato and I. Zavala, General axisymmetric solutions and self-tuning in 6D chiral gauged supergravity, JHEP 11 (2004) 069 [hep-th/0408109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. S. Parameswaran, G. Tasinato and I. Zavala, The 6D superswirl, Nucl. Phys. B 737 (2006) 49 [hep-th/0509061] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. H.M. Lee and C. Lüdeling, The general warped solution with conical branes in six-dimensional supergravity, JHEP 01 (2006) 062 [hep-th/0510026] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A.J. Tolley, C. Burgess, D. Hoover and Y. Aghababaie, Bulk singularities and the effective cosmological constant for higher co-dimension branes, JHEP 03 (2006) 091 [hep-th/0512218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. A.J. Tolley, C.P. Burgess, C. de Rham and D. Hoover, Scaling solutions to 6D gauged chiral supergravity, New J. Phys. 8 (2006) 324 [hep-th/0608083] [INSPIRE].

    Article  ADS  Google Scholar 

  70. A.J. Tolley, C. Burgess, C. de Rham and D. Hoover, Exact wave solutions to 6D gauged chiral supergravity, JHEP 07 (2008) 075 [arXiv:0710.3769] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Minamitsuji, Instability of brane cosmological solutions with flux compactifications, Class. Quant. Grav. 25 (2008) 075019 [arXiv:0801.3080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. C. Burgess, C. de Rham, D. Hoover, D. Mason and A. Tolley, Kicking the rugby ball: perturbations of 6D gauged chiral supergravity, JCAP 02 (2007) 009 [hep-th/0610078] [INSPIRE].

    Article  ADS  Google Scholar 

  73. S. Parameswaran, S. Randjbar-Daemi and A. Salvio, General perturbations for braneworld compactifications and the six dimensional case, JHEP 03 (2009) 136 [arXiv:0902.0375] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  75. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  76. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  77. B.A. Dobrescu and J.D. Lykken, Coupling spans of the Higgs-like boson, JHEP 02 (2013) 073 [arXiv:1210.3342] [INSPIRE].

    Article  ADS  Google Scholar 

  78. G.G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles, Chicago Univ. Pr., Chicago U.S.A. (1996).

  79. S. Hannestad and G.G. Raffelt, Stringent neutron star limits on large extra dimensions, Phys. Rev. Lett. 88 (2002) 071301 [hep-ph/0110067] [INSPIRE].

    Article  ADS  Google Scholar 

  80. S. Hannestad and G. Raffelt, New supernova limit on large extra dimensions, Phys. Rev. Lett. 87 (2001) 051301 [hep-ph/0103201] [INSPIRE].

    Article  ADS  Google Scholar 

  81. S. Cullen and M. Perelstein, SN1987a constraints on large compact dimensions, Phys. Rev. Lett. 83 (1999) 268 [hep-ph/9903422] [INSPIRE].

    Article  ADS  Google Scholar 

  82. V.D. Barger, T. Han, C. Kao and R.-J. Zhang, Astrophysical constraints on large extra dimensions, Phys. Lett. B 461 (1999) 34 [hep-ph/9905474] [INSPIRE].

    ADS  Google Scholar 

  83. D. Atwood et al., Supersymmetric large extra dimensions are small and/or numerous, Phys. Rev. D 63 (2001) 025007 [hep-ph/0007178] [INSPIRE].

    ADS  Google Scholar 

  84. J.P. Miller, E. de Rafael and B.L. Roberts, Muon (g-2): experiment and theory, Rept. Prog. Phys. 70 (2007) 795 [hep-ph/0703049] [INSPIRE].

    Article  ADS  Google Scholar 

  85. LEP Higgs Working for Higgs boson searches, ALEPH, DELPHI, CERN-L3 and OPAL collaborations, Searches for invisible Higgs bosons: preliminary combined results using LEP data collected at energies up to 209 GeV, hep-ex/0107032 [INSPIRE].

  86. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  87. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].

    Google Scholar 

  88. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  89. C. Burgess, J. Matias and M. Pospelov, A Higgs or not a Higgs? What to do if you discover a new scalar particle, Int. J. Mod. Phys. A 17 (2002) 1841 [hep-ph/9912459] [INSPIRE].

    ADS  Google Scholar 

  90. ATLAS collaboration, Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 705 (2011) 294 [arXiv:1106.5327] [INSPIRE].

    ADS  Google Scholar 

  91. ATLAS collaboration, Search for new phenomena in monojet plus missing transverse momentum final states using 1 fb−1 of pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2011-096, CERN, Geneva Switzerland (2011).

  92. C. Englert, J. Jaeckel, E. Re and M. Spannowsky, Evasive Higgs maneuvers at the LHC, Phys. Rev. D 85 (2012) 035008 [arXiv:1111.1719] [INSPIRE].

    ADS  Google Scholar 

  93. CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].

    ADS  Google Scholar 

  94. CMS collaboration, Search for new physics with a monojet and missing transverse energy in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-EXO-11-059, CERN, Geneva Switzerland (2011).

  95. A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Direct detection of Higgs-portal dark matter at the LHC, arXiv:1205.3169 [INSPIRE].

  96. Y. Bai, P. Draper and J. Shelton, Measuring the invisible Higgs width at the 7 and 8 TeV LHC, JHEP 07 (2012) 192 [arXiv:1112.4496] [INSPIRE].

    Article  ADS  Google Scholar 

  97. D. Ghosh, R. Godbole, M. Guchait, K. Mohan and D. Sengupta, Looking for an invisible Higgs signal at the LHC, arXiv:1211.7015 [INSPIRE].

  98. G. Raffelt and D. Seckel, Multiple scattering suppression of the bremsstrahlung emission of neutrinos and axions in supernovae, Phys. Rev. Lett. 67 (1991) 2605 [INSPIRE].

    Article  ADS  Google Scholar 

  99. J. Grifols, E. Masso and S. Peris, Energy loss from the sun and red giants: bounds on short range baryonic and leptonic forces, Mod. Phys. Lett. A 4 (1989) 311 [INSPIRE].

    ADS  Google Scholar 

  100. C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  101. N. Ishizuka and M. Yoshimura, Axion and dilaton emissivity from nascent neutron stars, Prog. Theor. Phys. 84 (1990) 233 [INSPIRE].

    Article  ADS  Google Scholar 

  102. C. Hanhart, D.R. Phillips and S. Reddy, Neutrino and axion emissivities of neutron stars from nucleon-nucleon scattering data, Phys. Lett. B 499 (2001) 9 [astro-ph/0003445] [INSPIRE].

    ADS  Google Scholar 

  103. C. Hanhart, D.R. Phillips, S. Reddy and M.J. Savage, Extra dimensions, SN1987a and nucleon-nucleon scattering data, Nucl. Phys. B 595 (2001) 335 [nucl-th/0007016] [INSPIRE].

    Article  ADS  Google Scholar 

  104. D. Arndt and P.J. Fox, Saxion emission from SN1987a, JHEP 02 (2003) 036 [hep-ph/0207098] [INSPIRE].

    Article  ADS  Google Scholar 

  105. S. Weinberg, Mass of the Higgs boson, Phys. Rev. Lett. 36 (1976) 294 [INSPIRE].

    Article  ADS  Google Scholar 

  106. A.D. Linde, Dynamical symmetry restoration and constraints on masses and coupling constants in gauge theories, JETP Lett. 23 (1976) 64 [Pisma Zh. Eksp. Teor. Fiz. 23 (1976) 73] [INSPIRE].

    ADS  Google Scholar 

  107. B. Grzadkowski and M. Lindner, Stability of triviality mass bounds in the Standard Model, Phys. Lett. B 178 (1986) 81 [INSPIRE].

    ADS  Google Scholar 

  108. M. Lüscher and P. Weisz, Scaling laws and triviality bounds in the lattice ϕ 4 theory. 1. One component model in the symmetric phase, Nucl. Phys. B 290 (1987) 25 [INSPIRE].

    Article  ADS  Google Scholar 

  109. M. Lüscher and P. Weisz, Scaling laws and triviality bounds in the lattice ϕ 4 theory. 2. One component model in the phase with spontaneous symmetry breaking, Nucl. Phys. B 295 (1988) 65 [INSPIRE].

    Article  ADS  Google Scholar 

  110. S. Dawson, Introduction to electroweak symmetry breaking, hep-ph/9901280 [INSPIRE].

  111. T. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].

    ADS  Google Scholar 

  112. T. Han and Z. Liu, Direct measurement of the Higgs boson total width at a muon collider, Phys. Rev. D 87 (2013) 033007 [arXiv:1210.7803] [INSPIRE].

    ADS  Google Scholar 

  113. H. Baer et al., Physics at the International Linear Collider, physics chapter of the ILC detailed baseline design report, preliminary version, http://lcsim.org/papers/DBDPhysics.pdf, draft of January 22 2013.

  114. J.-W. Chen, M.A. Luty and E. Ponton, A critical cosmological constant from millimeter extra dimensions, JHEP 09 (2000) 012 [hep-th/0003067] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  115. F. Leblond, R.C. Myers and D.J. Winters, Consistency conditions for brane worlds in arbitrary dimensions, JHEP 07 (2001) 031 [hep-th/0106140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  116. S.M. Carroll and M.M. Guica, Sidestepping the cosmological constant with football shaped extra dimensions, hep-th/0302067 [INSPIRE].

  117. C. Burgess and L. van Nierop, Technically natural cosmological constant from supersymmetric 6D brane backreaction, arXiv:1108.0345 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Diener.

Additional information

ArXiv ePrint: 1302.6486

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diener, R., Burgess, C.P. Bulk stabilization, the extra-dimensional Higgs portal and missing energy in Higgs events. J. High Energ. Phys. 2013, 78 (2013). https://doi.org/10.1007/JHEP05(2013)078

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)078

Keywords

Navigation