Skip to main content
Log in

Higgs and sparticle spectroscopy with Gauge-Yukawa unification

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We explore the Higgs and sparticle spectroscopy of supersymmetric SU(4) c  × SU(2) L  × SU(2) R models in which the three MSSM gauge couplings and third family (t-b-τ) Yukawa couplings are all unified at M GUT. This class of models can be obtained via compactification of a higher dimensional theory. Allowing for opposite sign gaugino masses and varying m t within 1σ of its current central value yields a variety of gauge-Yukawa unification as well as WMAP compatible neutralino dark matter solutions. They include mixed bino-Higgsino dark matter, stau and gluino coannihilation scenarios, and the A-resonance solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [SPIRES].

    ADS  Google Scholar 

  2. S.I. Gogolev et al., Total cross-section of the reaction π + d → pp at pion energies 26-MeV to 40-MeV, Phys. Lett. B 300 (1993) 24 [SPIRES].

    ADS  Google Scholar 

  3. Q. Shafi and B. Ananthanarayan, Will LEP-2 narrowly miss the Weinberg-Salam Higgs boson, Trieste HEP Cosmol. (1991), pg. 233–244.

  4. L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].

    ADS  Google Scholar 

  5. M. Olechowski and S. Pokorski, Hierarchy of Quark Masses in the Isotopic Doublets in N = 1 Supergravity Models, Phys. Lett. B 214 (1988) 393 [SPIRES].

    ADS  Google Scholar 

  6. T. Banks, Supersymmetry and the Quark Mass Matrix, Nucl. Phys. B 303 (1988) 172 [SPIRES].

    Article  ADS  Google Scholar 

  7. V.D. Barger, M.S. Berger and P. Ohmann, The Supersymmetric particle spectrum, Phys. Rev. D 49 (1994) 4908 [hep-ph/9311269] [SPIRES].

    ADS  Google Scholar 

  8. M.S. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [SPIRES].

    Article  ADS  Google Scholar 

  9. B. Ananthanarayan, Q. Shafi and X.M. Wang, Improved predictions for top quark, lightest supersymmetric particle and Higgs scalar masses, Phys. Rev. D 50 (1994) 5980 [hep-ph/9311225] [SPIRES].

    ADS  Google Scholar 

  10. G.W. Anderson, S. Raby, S. Dimopoulos and L.J. Hall, Precise predictions for m t , V cb and tan Beta, Phys. Rev. D 47 (1993) 3702 [hep-ph/9209250] [SPIRES].

    ADS  Google Scholar 

  11. G. Anderson, S. Raby, S. Dimopoulos, L.J. Hall and G.D. Starkman, A Systematic SO(10) operator analysis for fermion masses, Phys. Rev. D 49 (1994) 3660 [hep-ph/9308333] [SPIRES].

    ADS  Google Scholar 

  12. R. Rattazzi and U. Sarid, The Unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [SPIRES].

    ADS  Google Scholar 

  13. T. Blazek, M.S. Carena, S. Raby and C.E.M. Wagner, A global chi 2 analysis of electroweak data in SO(10) SUSY GUTs, Phys. Rev. D 56 (1997) 6919 [hep-ph/9611217] [SPIRES].

    ADS  Google Scholar 

  14. T. Blazek, S. Raby and K. Tobe, Neutrino oscillations in an SO(10) SUSY GUT with U(2) × U(1)n family symmetry, Phys. Rev. D 62 (2000) 055001 [hep-ph/9912482] [SPIRES].

    ADS  Google Scholar 

  15. H. Baer, M.A. Diaz, J. Ferrandis and X. Tata, Sparticle mass spectra from SO(10) grand unified models with Yukawa coupling unification, Phys. Rev. D 61 (2000) 111701 [hep-ph/9907211] [SPIRES].

    ADS  Google Scholar 

  16. H. Baer et al., Yukawa unified supersymmetric SO(10) model: Cosmology, rare decays and collider searches, Phys. Rev. D 63 (2000) 015007 [hep-ph/0005027] [SPIRES].

    ADS  Google Scholar 

  17. S.Profumo, Neutralino dark matter, b − τ Yukawa unification and non-universal sfermion masses, Phys. Rev. D 68 (2003) 015006 [hep-ph/0304071] [SPIRES].

    ADS  Google Scholar 

  18. C. Balázs and R. Dermisek, Yukawa coupling unification and non-universal gaugino mediation of supersymmetry breaking, JHEP 06 (2003) 024 [hep-ph/0303161] [SPIRES].

    Article  ADS  Google Scholar 

  19. C. Pallis, b-tau unification and sfermion mass non-universality, Nucl. Phys. B 678 (2004) 398 [hep-ph/0304047] [SPIRES].

    Article  ADS  Google Scholar 

  20. M.E. Gomez, G. Lazarides and C. Pallis, Supersymmetric cold dark matter with Yukawa unification, Phys. Rev. D 61 (2000) 123512 [hep-ph/9907261] [SPIRES].

    ADS  Google Scholar 

  21. M.E. Gomez, G. Lazarides and C. Pallis, Yukawa quasi-unification, Nucl. Phys. B 638 (2002) 165 [hep-ph/0203131] [SPIRES].

    Article  ADS  Google Scholar 

  22. M.E. Gomez, G. Lazarides and C. Pallis, On Yukawa quasi-unification with μ < 0, Phys. Rev. D 67 (2003) 097701 [hep-ph/0301064] [SPIRES].

    ADS  Google Scholar 

  23. U. Chattopadhyay, A. Corsetti and P. Nath, Supersymmetric dark matter and Yukawa unification, Phys. Rev. D 66 (2002) 035003 [hep-ph/0201001] [SPIRES].

    ADS  Google Scholar 

  24. T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and SUSY spectra from SO(10) Yukawa unification with μ > 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [SPIRES].

    Article  ADS  Google Scholar 

  25. T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [SPIRES].

    ADS  Google Scholar 

  26. M.E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, WMAP dark matter constraints and Yukawa unification in SUGRA models with CP phases, Phys. Rev. D 72 (2005) 095008 [hep-ph/0506243] [SPIRES].

    ADS  Google Scholar 

  27. K. Tobe and J.D. Wells, Revisiting top-bottom-tau Yukawa unification in supersymmetric grand unified theories, Nucl. Phys. B 663 (2003) 123 [hep-ph/0301015] [SPIRES].

    Article  ADS  Google Scholar 

  28. W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa unification: A Go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385 [arXiv:0801.4363] [SPIRES].

    ADS  Google Scholar 

  29. S. Antusch and M. Spinrath, Quark and lepton masses at the GUT scale including SUSY threshold corrections, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717] [SPIRES].

    ADS  Google Scholar 

  30. S. Antusch and M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D 79 (2009) 095004 [arXiv:0902.4644] [SPIRES].

    ADS  Google Scholar 

  31. D. Guadagnoli, S. Raby and D.M. Straub, Viable and testable SUSY GUTs with Yukawa unification: the case of split trilinears, JHEP 10 (2009) 059 [arXiv:0907.4709] [SPIRES].

    Article  ADS  Google Scholar 

  32. H. Baer, S. Kraml and S. Sekmen, Is ’just-so’ Higgs splitting needed for t − b − τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [SPIRES].

    Article  ADS  Google Scholar 

  33. K. Choi, D. Guadagnoli, S.H. Im and C.B. Park, Sparticle masses from transverse mass kinks at the LHC: the case of Yukawa-unified SUSY GUTs, JHEP 10 (2010) 025 [arXiv:1005.0618] [SPIRES].

    ADS  Google Scholar 

  34. H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [SPIRES].

    Article  ADS  Google Scholar 

  35. H. Baer, M. Haider, S. Kraml, S. Sekmen and H. Summy, Cosmological consequences of Yukawa-unified SUSY with mixed axion/axino cold and warm dark matter, JCAP 02 (2009) 002 [arXiv:0812.2693] [SPIRES].

    ADS  Google Scholar 

  36. I. Gogoladze, R. Khalid and Q. Shafi, Yukawa Unification and Neutralino Dark Matter in SU(4) c  × SU(2) L  × SU(2) R , Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [SPIRES].

    ADS  Google Scholar 

  37. H. Baer, S. Kraml, A. Lessa and S. Sekmen, Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E T , JHEP 02 (2010) 055 [arXiv:0911.4739] [SPIRES].

    Article  ADS  Google Scholar 

  38. I. Gogoladze, R. Khalid and Q. Shafi, Coannihilation Scenarios and Particle Spectroscopy in SU(4) c  × SU(2) L  × SU(2) R , Phys. Rev. D 80 (2009) 095016 [arXiv:0908.0731] [SPIRES].

    ADS  Google Scholar 

  39. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, t − b − τ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum, arXiv:1008.2765 [SPIRES].

  40. J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [SPIRES].

    ADS  Google Scholar 

  41. S. Profumo and C.E. Yaguna, Gluino coannihilations and heavy bino dark matter, Phys. Rev. D 69 (2004) 115009 [hep-ph/0402208] [SPIRES].

    ADS  Google Scholar 

  42. D. Feldman, Z. Liu and P. Nath, Gluino NLSP, Dark Matter via Gluino Coannihilation and LHC Signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [SPIRES].

    ADS  Google Scholar 

  43. N. Chen, D. Feldman, Z. Liu, P. Nath and G. Peim, Low Mass Gluino within the Sparticle Landscape, Implications for Dark Matter and Early Discovery Prospects at LHC-7, Phys. Rev. D 83 (2011) 035005 [arXiv:1011.1246] [SPIRES].

    ADS  Google Scholar 

  44. M. Adeel Ajaib, T. Li, Q. Shafi and K. Wang, NLSP Gluino Search at the Tevatron and early LHC, JHEP 01 (2011) 028 [arXiv:1011.5518] [SPIRES].

    Article  ADS  Google Scholar 

  45. Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [SPIRES].

    ADS  Google Scholar 

  46. I. Gogoladze, Y. Mimura and S. Nandi, Unification of gauge, Higgs and matter in extra dimensions, Phys. Lett. B 562 (2003) 307 [hep-ph/0302176] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  47. G. Burdman and Y. Nomura, Unification of Higgs and Gauge Fields in Five Dimensions, Nucl. Phys. B 656 (2003) 3 [hep-ph/0210257] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. N. Haba and Y. Shimizu, Gauge-Higgs unification in the 5 dimensional E 6 , E 7 and E 8 GUTs on orbifold, Phys. Rev. D 67 (2003) 095001 [hep-ph/0212166] [SPIRES].

    ADS  Google Scholar 

  49. I. Gogoladze, Y. Mimura and S. Nandi, Gauge Higgs unification on the left-right model, Phys. Lett. B 560 (2003) 204 [hep-ph/0301014] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. I. Gogoladze, Y. Mimura and S. Nandi, Model building with gauge-Yukawa unification, Phys. Rev. D 69 (2004) 075006 [hep-ph/0311127] [SPIRES].

    ADS  Google Scholar 

  51. T. Kobayashi, S. Raby and R.-J. Zhang, Searching for realistic 4 d string models with a Pati-Salam symmetry: Orbifold grand unified theories from heterotic string compactification on a Z(6) orbifold, Nucl. Phys. B 704 (2005) 3 [hep-ph/0409098] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. I. Gogoladze, C.-A. Lee, Y. Mimura and Q. Shafi, Yukawa couplings in a model with gauge, Higgs and matter unification, Phys. Lett. B 649 (2007) 212 [hep-ph/0703107] [SPIRES].

    ADS  Google Scholar 

  53. I. Gogoladze, Y. Mimura, S. Nandi and K. Tobe, Test of gauge-Yukawa unification, Phys. Lett. B 575 (2003) 66 [hep-ph/0307397] [SPIRES].

    ADS  Google Scholar 

  54. R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [SPIRES].

    ADS  Google Scholar 

  55. G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [SPIRES].

    ADS  Google Scholar 

  56. M. Magg, Q. Shafi and C. Wetterich, Gauge hierarchy in presence of discrete symmetry, Phys. Lett. B 87 (1979) 227 [SPIRES].

    ADS  Google Scholar 

  57. M. Cvetič, Spontaneous breaking of the left-right symmetry and quantum corrections, Nucl. Phys. B 233 (1984) 387 [SPIRES].

    Article  ADS  Google Scholar 

  58. T.W.B. Kibble, G. Lazarides and Q. Shafi, Strings in SO(10), Phys. Lett. B 113 (1982) 237 [SPIRES].

    ADS  Google Scholar 

  59. T.W.B. Kibble, G. Lazarides and Q. Shafi, Walls Bounded by Strings, Phys. Rev. D 26 (1982) 435 [SPIRES].

    ADS  Google Scholar 

  60. R.N. Mohapatra and B. Sakita, SO(2 N) grand unification in an SU(N) basis, Phys. Rev. D 21 (1980) 1062 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [SPIRES].

    Article  ADS  Google Scholar 

  62. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge Models with Spontaneously Broken Local Supersymmetry, Phys. Lett. B 119 (1982) 343 [SPIRES].

    ADS  Google Scholar 

  63. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [SPIRES].

    ADS  Google Scholar 

  64. E. Cremmer, P. Fayet and L. Girardello, Gravity Induced Supersymmetry Breaking and Low-Energy Mass Spectrum, Phys. Lett. B 122 (1983) 41 [SPIRES].

    ADS  Google Scholar 

  65. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [SPIRES].

    Article  ADS  Google Scholar 

  66. A. Hebecker and J. March-Russell, The structure of GUT breaking by orbifolding, Nucl. Phys. B 625 (2002) 128 [hep-ph/0107039] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. H. Baer, F.E. Paige, S.D. Protopopescu and X. Tata, ISAJET 7.48: A Monte Carlo event generator for p p, \( p\bar{p} \) and e + e reactions, hep-ph/0001086 [SPIRES].

  68. J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [SPIRES].

    Article  ADS  Google Scholar 

  69. Y. Yamada, SUSY and GUT threshold effects in SUSY SU(5) models, Z. Phys. C 60 (1993) 83 [SPIRES].

    ADS  Google Scholar 

  70. J.L. Chkareuli and I.G. Gogoladze, Unification picture in minimal supersymmetric SU(5) model with string remnants, Phys. Rev. D 58 (1998) 055011 [hep-ph/9803335] [SPIRES].

    ADS  Google Scholar 

  71. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].

    Article  ADS  Google Scholar 

  72. L.E. Ibáñez and G.G. Ross, SU(2) L  × U(1) Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts, Phys. Lett. B 110 (1982) 215 [SPIRES].

    ADS  Google Scholar 

  73. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Aspects of Grand Unified Models with Softly Broken Supersymmetry, Prog. Theor. Phys. 68 (1982) 927 [Erratum ibid. 70 (1983) 330] [SPIRES].

    Article  ADS  Google Scholar 

  74. L.E. Ibáñez, Locally Supersymmetric SU(5) Grand Unification, Phys. Lett. B 118 (1982) 73 [SPIRES].

    ADS  Google Scholar 

  75. J.R. Ellis, D.V. Nanopoulos and K. Tamvakis, Grand Unification in Simple Supergravity, Phys. Lett. B 121 (1983) 123 [SPIRES].

    ADS  Google Scholar 

  76. L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal Low-Energy Supergravity, Nucl. Phys. B 221 (1983) 495 [SPIRES].

    Article  ADS  Google Scholar 

  77. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].

    ADS  Google Scholar 

  78. CDF and D0 collaboration and others, Combination of CDF and D0 Results on the Mass of the Top Quark using up to 5.6 f b −1 of data, arXiv:1007.3178 [SPIRES].

  79. G. Bélanger, F. Boudjema, A. Pukhov and R.K. Singh, Constraining the MSSM with universal gaugino masses and implication for searches at the LHC, JHEP 11 (2009) 026 [arXiv:0906.5048] [SPIRES].

    Article  Google Scholar 

  80. H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [SPIRES].

    Article  ADS  Google Scholar 

  81. H. Baer, C. Balázs and A. Belyaev, Neutralino relic density in minimal supergravity with co-annihilations, JHEP 03 (2002) 042 [hep-ph/0202076] [SPIRES].

    Article  ADS  Google Scholar 

  82. H. Baer, C. Balázs, J. Ferrandis and X. Tata, Impact of muon anomalous magnetic moment on supersymmetric models, Phys. Rev. D 64 (2001) 035004 [hep-ph/0103280] [SPIRES].

    ADS  Google Scholar 

  83. ALEPH collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [SPIRES].

    Article  ADS  Google Scholar 

  84. CDF collaboration, T. Aaltonen et al., Search for B s  → μ + μ and B d  → μ + μ Decays with 2fb −1 of \( p\bar{p} \) Collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [SPIRES].

    Article  ADS  Google Scholar 

  85. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron Properties at the End of 2007, arXiv:0808.1297 [SPIRES].

  86. WMAP collaboration, E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  87. CMS collaboration, V. Khachatryan et al., Search for Supersymmetry in pp Collisions at 7 TeV in Events with Jets and Missing Transverse Energy, Phys. Lett. B 698 (2011) 196 [arXiv:1101.1628] [SPIRES].

    ADS  Google Scholar 

  88. ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [SPIRES].

    Article  ADS  Google Scholar 

  89. ATLAS collaboration, J.B.G. da Costa et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {{(s}} ) = 7 \) TeV proton-proton collisions, arXiv:1102.5290 [SPIRES].

  90. S. Akula et al., Interpreting the First CMS and ATLAS SUSY Results, Phys. Lett. B 699 (2011) 377 [arXiv:1103.1197] [SPIRES].

    ADS  Google Scholar 

  91. The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].

    Article  ADS  Google Scholar 

  92. XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].

    Article  ADS  Google Scholar 

  93. I. Gogoladze, R. Khalid, Y. Mimura and Q. Shafi, Direct and Indirect Detection and LHC Signals of Bino-Higgsino Dark Matter, Phys. Rev. D 83 (2011) 095007 [arXiv:1012.1613] [SPIRES].

    ADS  Google Scholar 

  94. Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D 70 (2004) 083523 [Erratum ibid. D 70 (2004) 109901] [hep-ex/0404025] [SPIRES].

    ADS  Google Scholar 

  95. IceCube collaboration, R. Abbasi et al., Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector, Phys. Rev. Lett. 102 (2009) 201302 [arXiv:0902.2460] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Khalid.

Additional information

ArXiv ePrint: 1102.0013

On leave of absence from Andronikashvili Institute of Physics, GAS, Tbilisi, Georgia. (Ilia Gogoladze)

On study leave from Centre for Advanced Mathematics and Physics of the National University of Sciences & Technology, H-12, Islamabad, Pakistan. (Rizwan Khalid)

On study leave from Department of Physics, FUUAST, Islamabad, Pakistan. (Shabbar Raza)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogoladze, I., Khalid, R., Raza, S. et al. Higgs and sparticle spectroscopy with Gauge-Yukawa unification. J. High Energ. Phys. 2011, 117 (2011). https://doi.org/10.1007/JHEP06(2011)117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)117

Keywords

Navigation