Skip to main content
Log in

κ-deformation of phase space; generalized Poincaré algebras and R-matrix

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We deform a phase space (Heisenberg algebra and corresponding coalgebra) by twist. We present undeformed and deformed tensor identities that are crucial in our construction. Coalgebras for the generalized Poincaré algebras have been constructed. The exact universal R-matrix for the deformed Heisenberg (co)algebra is found. We show, up to the third order in the deformation parameter, that in the case of κ-Poincaré Hopf algebra this R-matrix can be expressed in terms of Poincaré generators only. This implies that the states of any number of identical particles can be defined in a κ-covariant way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Doplicher, K. Fredenhagen and J. Roberts, Space-time quantization induced by classical gravity, Phys. Lett. B 331 (1994) 39 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Doplicher, K. Fredenhagen and J.E. Roberts, The Quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 [hep-th/0303037] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, Q deformation of Poincaré algebra, Phys. Lett. B 264 (1991) 331 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Lukierski and H. Ruegg, Quantum kappa Poincaré in any dimension, Phys. Lett. B 329 (1994) 189 [hep-th/9310117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Majid and H. Ruegg, Bicrossproduct structure of kappa Poincaré group and noncommutative geometry, Phys. Lett. B 334 (1994) 348 [hep-th/9405107] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. J. Kowalski-Glikman and S. Nowak, Doubly special relativity theories as different bases of κ-Poincaré algebra, Phys. Lett. B 539 (2002) 126 [hep-th/0203040].

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Kosinski, J. Lukierski and P. Maslanka, Local D = 4 field theory on kappa deformed Minkowski space, Phys. Rev. D 62 (2000) 025004 [hep-th/9902037] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. M. Daszkiewicz, J. Lukierski and M. Woronowicz, Towards quantum noncommutative kappa-deformed field theory, Phys. Rev. D 77 (2008) 105007 [arXiv:0708.1561] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. H.-C. Kim, Y. Lee, C. Rim and J.H. Yee, Scalar Field theory in kappa-Minkowski spacetime from twist, J. Math. Phys. 50 (2009) 102304 [arXiv:0901.0049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Meljanac and A. Samsarov, Scalar field theory on kappa-Minkowski spacetime and translation and Lorentz invariance, Int. J. Mod. Phys. A 26 (2011) 1439 [arXiv:1007.3943] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Meljanac, A. Samsarov, J. Trampetic and M. Wohlgenannt, Scalar field propagation in the ϕ 4 kappa-Minkowski model, JHEP 12 (2011) 010 [arXiv:1111.5553] [INSPIRE].

    Article  ADS  Google Scholar 

  12. E. Harikumar, T. Juric and S. Meljanac, Electrodynamics on κ-Minkowski space-time, Phys. Rev. D 84 (2011) 085020 [arXiv:1107.3936] [INSPIRE].

    ADS  Google Scholar 

  13. E. Harikumar, Maxwells equations on the κ-Minkowski spacetime and Electric-Magnetic duality, Europhys. Lett. 90 (2010) 21001 [arXiv:1002.3202] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Dimitrijević and L. Jonke, A Twisted look on kappa-Minkowski: U(1) gauge theory, JHEP 12 (2011) 080 [arXiv:1107.3475] [INSPIRE].

    Article  ADS  Google Scholar 

  15. E. Harikumar, T. Juric and S. Meljanac, Geodesic equation in k-Minkowski spacetime, arXiv:1203.1564 [INSPIRE].

  16. M. Daszkiewicz, J. Lukierski and M. Woronowicz, kappa-deformed statistics and classical fourmomentum addition law, Mod. Phys. Lett. A 23 (2008) 653 [hep-th/0703200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Arzano and A. Marciano, Symplectic geometry and Noether charges for Hopf algebra space-time symmetries, Phys. Rev. D 75 (2007) 081701 [hep-th/0701268] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. C. Young and R. Zegers, Covariant particle statistics and intertwiners of the kappa-deformed Poincaré algebra, Nucl. Phys. B 797 (2008) 537 [arXiv:0711.2206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Young and R. Zegers, Covariant particle exchange for kappa-deformed theories in 1+1 dimensions, Nucl. Phys. B 804 (2008) 342 [arXiv:0803.2659] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Govindarajan, K.S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, Twisted statistics in kappa-Minkowski spacetime, Phys. Rev. D 77 (2008) 105010 [arXiv:0802.1576] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. T. Govindarajan, K.S. Gupta, E. Harikumar, S. Meljanac and D. Meljanac, Deformed Oscillator Algebras and QFT in kappa-Minkowski Spacetime, Phys. Rev. D 80 (2009) 025014 [arXiv:0903.2355] [INSPIRE].

    ADS  Google Scholar 

  22. K.S. Gupta, S. Meljanac and A. Samsarov, Quantum statistics and noncommutative black holes, Phys. Rev. D 85 (2012) 045029 [arXiv:1108.0341] [INSPIRE].

    ADS  Google Scholar 

  23. M. Chaichian, P. Kulish, K. Nishijima and A. Tureanu, On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B 604 (2004) 98 [hep-th/0408069] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Balachandran et al., Statistics and UV-IR mixing with twisted Poincaré invariance, Phys. Rev. D 75 (2007) 045009 [hep-th/0608179] [INSPIRE].

    ADS  Google Scholar 

  25. J.-G. Bu, H.-C. Kim, Y. Lee, C.H. Vac and J.H. Yee, kappa-deformed Spacetime From Twist, Phys. Lett. B 665 (2008) 95 [hep-th/0611175] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. H.-C. Kim, Y. Lee, C. Rim and J.H. Yee, Differential structure on the kappa-Minkowski spacetime from twist, Phys. Lett. B 671 (2009) 398 [arXiv:0808.2866] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Borowiec and A. Pachol, kappa-Minkowski spacetime as the result of Jordanian twist deformation, Phys. Rev. D 79 (2009) 045012 [arXiv:0812.0576] [INSPIRE].

    ADS  Google Scholar 

  28. J.-G. Bu, J.H. Yee and H.-C. Kim, Differential Structure on kappa-Minkowski Spacetime Realized as Module of Twisted Weyl Algebra, Phys. Lett. B 679 (2009) 486 [arXiv:0903.0040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. C. Young and R. Zegers, On kappa-deformation and triangular quasibialgebra structure, Nucl. Phys. B 809 (2009) 439 [arXiv:0807.2745] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Kovacevic, S. Meljanac, A. Pachol and R. Strajn, Generalized Poincaré algebras, Hopf algebras and kappa-Minkowski spacetime, Phys. Lett. B 711 (2012) 122 [arXiv:1202.3305] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. J.H. Lu, Hopf algebroids and quantum groupoids, Int. J. Math. 7 (1996) 47 [q-alg/9505024].

    Article  MATH  Google Scholar 

  32. S. Meljanac and M. Stojic, New realizations of Lie algebra kappa-deformed Euclidean space, Eur. Phys. J. C 47 (2006) 531 [hep-th/0605133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Kresic-Juric, S. Meljanac and M. Stojic, Covariant realizations of kappa-deformed space, Eur. Phys. J. C 51 (2007) 229 [hep-th/0702215] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. S. Meljanac, A. Samsarov, M. Stojic and K. Gupta, Kappa-Minkowski space-time and the star product realizations, Eur. Phys. J. C 53 (2008) 295 [arXiv:0705.2471] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Kovacevic and S. Meljanac, Kappa-Minkowski spacetime, Kappa-Poincaré Hopf algebra and realizations, J. Phys. A 45 (2012) 135208 [arXiv:1110.0944] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, The principle of relative locality, Phys. Rev. D 84 (2011) 084010 [arXiv:1101.0931] [INSPIRE].

    ADS  Google Scholar 

  37. G. Amelino-Camelia, M. Arzano, J. Kowalski-Glikman, G. Rosati and G. Trevisan, Relative-locality distant observers and the phenomenology of momentum-space geometry, Class. Quant. Grav. 29 (2012) 075007 [arXiv:1107.1724] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. Amelino-Camelia, L. Smolin and A. Starodubtsev, Quantum symmetry, the cosmological constant and Planck scale phenomenology, Class. Quant. Grav. 21 (2004) 3095 [hep-th/0306134] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. L. Freidel, J. Kowalski-Glikman and L. Smolin, 2+1 gravity and doubly special relativity, Phys. Rev. D 69 (2004) 044001 [hep-th/0307085] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. L. Freidel and E.R. Livine, Ponzano-Regge model revisited III: Feynman diagrams and effective field theory, Class. Quant. Grav. 23 (2006) 2021 [hep-th/0502106] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. L. Freidel and E.R. Livine, Effective 3 − D quantum gravity and non-commutative quantum field theory, Phys. Rev. Lett. 96 (2006) 221301 [hep-th/0512113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D 11 (2002) 35 [gr-qc/0012051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. G. Amelino-Camelia, Testable scenario for relativity with minimum length, Phys. Lett. B 510 (2001) 255 [hep-th/0012238] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Magueijo and L. Smolin, Lorentz invariance with an invariant energy scale, Phys. Rev. Lett. 88 (2002) 190403 [hep-th/0112090] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Magueijo and L. Smolin, Generalized Lorentz invariance with an invariant energy scale, Phys. Rev. D 67 (2003) 044017 [gr-qc/0207085] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. D. Bird, S. Corbato, H. Dai, J. Elbert, K. Green, et al., Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation, Astrophys. J. 441 (1995) 144 [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Takeda, N. Hayashida, K. Honda, N. Inoue, K. Kadota, et al., Extension of the cosmic ray energy spectrum beyond the predicted Greisen-Zatsepin-Kuzmin cutoff, Phys. Rev. Lett. 81 (1998) 1163 [astro-ph/9807193] [INSPIRE].

    Article  ADS  Google Scholar 

  48. The HEGRA collaboration, F.A. Aharonian et al., The time averaged TeV energy spectrum of Mkn 501 of the extraordinary 1997 outburst as measured with the stereoscopic Cherenkov telescope system of HEGRA, Astron. Astrophys. 349 (1999) 11 [astro-ph/9903386].

    Google Scholar 

  49. Fermi GBM collaboration, Fermi detection of delayed GeV emission from the short GRB 081024B, Astrophys. J. 712 (2010) 558 [arXiv:1002.3205] [INSPIRE].

    Article  Google Scholar 

  50. J. Friedman and R. Sorkin, Spin 1/2 from gravity, Phys. Rev. Lett. 44 (1980) 1100 [INSPIRE].

    Article  ADS  Google Scholar 

  51. C. Aneziris et al., Aspects of spin and statistics in generally covariant theories, Int. J. Mod. Phys. A 4 (1989) 5459 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. C. Aneziris et al., Statistics and general relativity, Mod. Phys. Lett. A 4 (1989) 331 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. G. Amelino-Camelia, J.R. Ellis, N. Mavromatos, D.V. Nanopoulos and S. Sarkar, Tests of quantum gravity from observations of gamma-ray bursts, Nature 393 (1998) 763 [astro-ph/9712103] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Gambini and J. Pullin, Nonstandard optics from quantum space-time, Phys. Rev. D 59 (1999) 124021 [gr-qc/9809038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. J. Alfaro, H.A. Morales-Tecotl and L.F. Urrutia, Quantum gravity corrections to neutrino propagation, Phys. Rev. Lett. 84 (2000) 2318 [gr-qc/9909079] [INSPIRE].

    Article  ADS  Google Scholar 

  56. G. Amelino-Camelia and T. Piran, Planck scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV gamma paradoxes, Phys. Rev. D 64 (2001) 036005 [astro-ph/0008107] [INSPIRE].

    ADS  Google Scholar 

  57. A. Borowiec, K.S. Gupta, S. Meljanac and A. Pachol, Constarints on the quantum gravity scale from kappa - Minkowski spacetime, Europhys. Lett. 92 (2010) 20006 [arXiv:0912.3299] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Samsarov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meljanac, S., Samsarov, A. & Štrajn, R. κ-deformation of phase space; generalized Poincaré algebras and R-matrix. J. High Energ. Phys. 2012, 127 (2012). https://doi.org/10.1007/JHEP08(2012)127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)127

Keywords

Navigation