Skip to main content

Advertisement

Log in

Honokiol: an effective inhibitor of high-glucose-induced upregulation of inflammatory cytokine production in human renal mesangial cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To evaluate the regulatory effects of honokiol on high-glucose (HG)-induced inflammatory responses of human renal mesangial cells (HRMCs).

Materials and methods

We performed MTS assays to determine the non-cytotoxic concentration of honokiol for HRMCs. Enzyme-linked immunosorbent assays were performed to analyze the expressions of the proteins interleukin (IL)-1β, IL-18, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, RANTES, and prostaglandin (PG) E2. The total nitric oxide (NO) concentration was determined using the Griess reaction.

Results

Treatment with 50 mmol/L glucose markedly increased the level of IL-1β, IL-18, TNF-α, PGE2, NO, TGF-β1, MCP-1, MIP-1α, and RANTES. Honokiol (~20 μmol/L) treatment inhibited the HG-induced expression of inflammatory cytokines such as IL-1β, IL-18, TNF-α, PGE2, NO, and TGF-β1 in a dose-dependent manner. Moreover, it markedly inhibited the expression of chemokines such as MCP-1, MIP-1α, and RANTES, which are upregulated under HG conditions.

Conclusion

Honokiol inhibits the HG-induced expression of inflammatory factors in HRMCs. Honokiol may be considered a promising drug with potent anti-inflammatory activities in addition to its strong anti-cancer, anti-angiogenesis, and anti-neurodegenerative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Navarro JF, Mora C. Role of inflammation in diabetic complications. Nephrol Dial Transplant. 2005;20(12):2601–4.

    Article  PubMed  Google Scholar 

  2. Brown Z, Robson RL, Westwick J. Regulation and expression of chemokines: potential role in glomerulonephritis. J Leukoc Biol. 1996;59(1):75–80.

    CAS  PubMed  Google Scholar 

  3. Lee HY, Noh HJ, Gang JG, Xu ZG, Jeong HJ, Kang SW, Choi KH, Han DS. Inducible nitric oxide synthase (iNOS) expression is increased in lipopolysaccharide (LPS)-stimulated diabetic rat glomeruli: effect of ACE inhibitor and angiotensin II receptor blocker. Yonsei Med J. 2002;43(2):183–92.

    CAS  PubMed  Google Scholar 

  4. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S, Danesh FR. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med. 2008;233(1):4–11.

    Article  CAS  Google Scholar 

  5. Teramoto K, Negoro N, Kitamoto K, Iwai T, Iwao H, Okamura M, Miura K. Microarray analysis of glomerular gene expression in murine lupus nephritis. J Pharmacol Sci. 2008;106(1):56–67.

    Article  CAS  PubMed  Google Scholar 

  6. Campbell S, Burkly LC, Gao HX, Berman JW, Su L, Browning B, Zheng T, Schiffer L, Michaelson JS, Putterman C. Proinflammatory effects of TWEAK/Fn14 interactions in glomerular mesangial cells. J Immunol. 2006;176(3):1889–98.

    CAS  PubMed  Google Scholar 

  7. Mezzano S, Aros C, Droguett A, Burgos ME, Ardiles L, Flores C, Schneider H, Ruiz-Ortega M, Egido J. NF-κB activation and overexpression of regulated genes in human diabetic nephropthy. Nephrol Dial Transplant. 2004;19(10):2505–12.

    Article  CAS  PubMed  Google Scholar 

  8. Utimura R, Fujihara CK, Mattar AL, Malheiros DM, Noronha IL, Zatz R. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int. 2003;63(1):209–16.

    Article  CAS  PubMed  Google Scholar 

  9. Kikuchi Y, Imakiire T, Yamada M, et al. Mizoribine reduces renal injury and macrophage infiltration in non-insulin-dependent diabetic rats. Nephrol Dial Transplant. 2005;20(8):1573–81.

    Article  CAS  PubMed  Google Scholar 

  10. Lee SY, Cho JY. Inhibitory effects of honokiol on LPS and PMA-induced cellular responses of macrophages and monocytes. BMB Rep. 2009;42(9):574–9.

    CAS  PubMed  Google Scholar 

  11. Sheu ML, Chiang CK, Tsai KS, Ho FM, Weng TI, Wu HY, Liu SH. Inhibition of NADPH oxidase-related oxidative stress-triggered signaling by honokiol suppresses high glucose-induced human endothelial cell apoptosis. Free Radic Biol Med. 2008;44(12):2043–50.

    Article  CAS  PubMed  Google Scholar 

  12. Kim BH, Cho JY. Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression. Acta Pharmacol Sin. 2008;29(1):113–22.

    Article  CAS  PubMed  Google Scholar 

  13. Thorvaldson L, Stalhammar S, Sandler S. Effects of a diabetes-like environment in vitro on cytokine production by mouse splenocytes. Cytokine. 2008;43(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  14. Hasegawa G, Nakano K, Sawada M, et al. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int. 1991;40(6):1007–12.

    Article  CAS  PubMed  Google Scholar 

  15. Leehey DJ, Isreb MA, Marcic S, Singh AK, Singh R. Effect of high glucose on superoxide in human mesangial cells: role of angiotensin II. Nephron Exp Nephrol. 2005;100(1):46–53.

    Article  Google Scholar 

  16. Iglesias-de la Cruz MC, Ziyadeh FN, Isono M, Kouahou M, Han DC, Kalluri R, Mundel P, Chen S. Effects of high glucose and TGF-β1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney Int. 2002;62(3):901–13.

    Article  CAS  PubMed  Google Scholar 

  17. Clarkson MR, Murphy M, Gupta S, Lambe T, Mackenzie HS, Godson C, Martin F, Brady HR. High glucose-altered gene expression in mesangial cells. Actin-regulatory protein gene expression is triggered by oxidative stress and cytoskeletal disassembly. J Biol Chem. 2002;277(12):9707–12.

    Article  CAS  PubMed  Google Scholar 

  18. Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes. 2004;53(8):2079–86.

    Article  CAS  PubMed  Google Scholar 

  19. Tesch GH. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J physiol, Renal physiol. 2008;294(4):F697–701.

    Article  CAS  Google Scholar 

  20. Wu F, Yao H, Bader A, Dong F, Zhu F, Wu N, Wang B, Li H, Brockmeyer NH, Altmeyer P. Decorin gene transfer inhibited the expression of TGFβ1 and ECM in rat mesangial cells. Eur J Med Res. 2007;12(8):360–8.

    CAS  PubMed  Google Scholar 

  21. Sánchez-López E, Rodriguez-Vita J, Cartier C, Rupérez M, Esteban V, Carvajal G, Rodrígues-Díez R, Plaza JJ, Egido J, Ruiz-Ortega M. Inhibitory effect of interleukin-1β on angiotensin II-induced connective tissue growth factor and type IV collagen production in cultured mesangial cells. Am J physiol, Renal physiol. 2008;294(1):F149–60.

    Article  Google Scholar 

  22. Shui HA, Ka SM, Wu WM, Lin YF, Hou YC, Su LC, Chen A. LPS-evoked IL-18 expression in mesangial cells plays a role in accelerating lupus nephritis. Rheumatology (Oxford). 2007;46(8):1277–84.

    Article  CAS  Google Scholar 

  23. Viberti GC, Bognetti E, Wiseman MJ, Benigni A, Remuzzi G. Glomerular hyperfiltration and urinary prostaglandins in type 1 diabetes mellitus. Diabet Med. 1989;6(3):219–23.

    Article  CAS  PubMed  Google Scholar 

  24. Yu Z, Zhang W, Kone BC. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor κB. Biochem J. 2002;367(Pt 1):97–105.

    Article  CAS  PubMed  Google Scholar 

  25. Schwarz M, Radeke HH, Resch K, Uciechowski P. Lymphocyte-derived cytokines induce sequential expression of monocyte- and T cell-specific chemokines in human mesangial cells. Kidney Int. 1997;52(6):1521–31.

    Article  CAS  PubMed  Google Scholar 

  26. Huang J, Siragy HM. Glucose promotes the production of interleukine-1β and cyclooxygenase-2 in mesangial cells via enhanced (Pro)renin receptor expression. Endocrinology, 2009;150(12):5557–5565.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Science and Technology Foundation (2009C33150, 20090833B24) and Education Foundation (20070114) of Zhejiang Provincial, China. This manuscript is proofread by a native English professional with science background at Elixigen Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang-Ping Yao.

Additional information

Responsible Editor: Ian Ahnfelt-Rønne.

J.-P. Wu and W. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JP., Zhang, W., Wu, F. et al. Honokiol: an effective inhibitor of high-glucose-induced upregulation of inflammatory cytokine production in human renal mesangial cells. Inflamm. Res. 59, 1073–1079 (2010). https://doi.org/10.1007/s00011-010-0227-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0227-z

Keywords

Navigation