Skip to main content

Advertisement

Log in

HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-κB pathways

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

This study was designed to determine whether inhibition of heat shock protein 90 (HSP90) reduces pro-inflammatory mediator production by decreasing the nuclear factor (NF)-κB and Akt signaling pathways in immune-stimulated macrophages.

Methods

J774A.1 murine macrophages were treated with the HSP90 inhibitor 17-DMAG (0.01, 0.1 or 1 μM) prior to immune stimulation with lipopolysaccharide and interferon-γ. Expression of Akt, inhibitor of κB kinase (IKK), and heat shock proteins were measured in whole cell lysates by Western blotting. Phosphorylated Akt and inhibitor of κB (IκB) were measured in whole cell lysates by ELISA. Cell supernatants were analyzed for interleukin (IL)-6, tumor necrosis factor (TNF)-α and nitric oxide (NO). Translocation of NF-κB and heat shock factor (HSF)-1 was assessed by immunofluorescence.

Results

Treating cells with 17-DMAG reduced expression of Akt and IKK in immune-stimulated cells. 17-DMAG reduced nuclear translocation of NF-κB and reduced immune-stimulated production of IL-6, TNF-α and NO, but did not decrease inducible nitric oxide synthase expression.

Conclusions

Our studies show that the immune-mediated NF-κB inflammatory cascade is blocked by the HSP90 inhibitor 17-DMAG. Due to the broad interaction of HSP90 with many pro-inflammatory kinase cascades, inhibition of HSP90 may provide a novel approach to reducing chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications: a comprehensive review. Pharmacol Ther. 1998;79(2):129–68.

    Article  PubMed  CAS  Google Scholar 

  2. Blagg BS, Kerr TD. Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev. 2006;26(3):310–38.

    Article  PubMed  CAS  Google Scholar 

  3. Neckers L. Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med. 2002;8(4):S55–61.

    Article  PubMed  CAS  Google Scholar 

  4. Neckers L. Heat shock protein 90: the cancer chaperone. J Biosci. 2007;32(3):517–30.

    Article  PubMed  CAS  Google Scholar 

  5. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem. 2002;277(42):39858–66.

    Article  PubMed  CAS  Google Scholar 

  6. Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA. 2000;97(20):10832–7.

    Article  PubMed  CAS  Google Scholar 

  7. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N. Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res. 2003;63(9):2139–44.

    PubMed  CAS  Google Scholar 

  8. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761–72.

    Article  PubMed  CAS  Google Scholar 

  9. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood). 2003;228(2):111–33.

    CAS  Google Scholar 

  10. Shen G, Wang M, Welch TR, Blagg BS. Design, synthesis, and structure–activity relationships for chimeric inhibitors of Hsp90. J Org Chem. 2006;71(20):7618–31.

    Article  PubMed  CAS  Google Scholar 

  11. Francis LK, Alsayed Y, Leleu X, Jia X, Singha UK, Anderson J, et al. Combination mammalian target of rapamycin inhibitor rapamycin and HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin has synergistic activity in multiple myeloma. Clin Cancer Res. 2006;12(22):6826–35.

    Article  PubMed  CAS  Google Scholar 

  12. Bucci M, Roviezzo F, Cicala C, Sessa WC, Cirino G. Geldanamycin, an inhibitor of heat shock protein 90 (Hsp90) mediated signal transduction has anti-inflammatory effects and interacts with glucocorticoid receptor in vivo. Br J Pharmacol. 2000;131(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  13. Miao RQ, Fontana J, Fulton D, Lin MI, Harrison KD, Sessa WC. Dominant-negative Hsp90 reduces VEGF-stimulated nitric oxide release and migration in endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28(1):105–11.

    Article  PubMed  CAS  Google Scholar 

  14. Fujita N, Sato S, Ishida A, Tsuruo T. Involvement of Hsp90 in signaling and stability of 3-phosphoinositide-dependent kinase-1. J Biol Chem. 2002;277(12):10346–53.

    Article  PubMed  CAS  Google Scholar 

  15. Abramson JS, Chen W, Juszczynski P, Takahashi H, Neuberg D, Kutok JL, et al. The heat shock protein 90 inhibitor IPI-504 induces apoptosis of AKT-dependent diffuse large B-cell lymphomas. Br J Haematol. 2009;144(3):358–66.

    Article  PubMed  CAS  Google Scholar 

  16. Egorin M, Lagattuta T, Hamburger D, Covey J, White K, Musser S, et al. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol. 2002;49(1):7–19. doi:10.1007/s00280-001-0380-8.

    Article  PubMed  CAS  Google Scholar 

  17. Eiseman JL, Lan J, Lagattuta TF, Hamburger DR, Joseph E, Covey JM, et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother Pharmacol. 2005;55(1):21–32. doi:10.1007/s00280-004-0865-3.

    Article  PubMed  CAS  Google Scholar 

  18. Holzbeierlein J, Windsperger A, Vielhauer G. Hsp90: a drug target? Curr Oncol Rep. 2010;12(2):95–101.

    Article  PubMed  CAS  Google Scholar 

  19. Hertlein E, Wagner AJ, Jones J, Lin TS, Maddocks KJ, Towns WH 3rd, et al. 17-DMAG targets the nuclear factor-kappaB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood. 2010;116(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  20. Wax S, Piecyk M, Maritim B, Anderson P. Geldanamycin inhibits the production of inflammatory cytokines in activated macrophages by reducing the stability and translation of cytokine transcripts. Arthritis Rheum. 2003;48(2):541–50.

    Article  PubMed  CAS  Google Scholar 

  21. Mandrekar P, Catalano D, Jeliazkova V, Kodys K. Alcohol exposure regulates heat shock transcription factor binding and heat shock proteins 70 and 90 in monocytes and macrophages: implication for TNF-α regulation. J Leukoc Biol. 2008;84(5):1335–45.

    Article  PubMed  CAS  Google Scholar 

  22. Chatterjee A, Dimitropoulou C, Drakopanayiotakis F, Antonova G, Snead C, Cannon J, et al. Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am J Respir Crit Care Med. 2007;176(7):667–75.

    Article  PubMed  CAS  Google Scholar 

  23. Ha T, Hua F, Liu X, Ma J, McMullen JR, Shioi T, et al. Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovasc Res. 2008;78(3):546–53.

    Article  PubMed  CAS  Google Scholar 

  24. Ojaniemi M, Glumoff V, Harju K, Liljeroos M, Vuori K, Hallman M. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol. 2003;33(3):597–605.

    Article  PubMed  CAS  Google Scholar 

  25. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13(2):85–94.

    Article  PubMed  CAS  Google Scholar 

  26. Hu X, Chen J, Wang L, Ivashkiv LB. Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol. 2007;82(2):237–43.

    Article  PubMed  CAS  Google Scholar 

  27. Maira SM, Finan P, Garcia-Echeverria C. From the bench to the bed side: PI3K pathway inhibitors in clinical development. Curr Top Microbiol Immunol. 2010;347:209–39.

    Article  PubMed  CAS  Google Scholar 

  28. Shang L, Tomasi TB. The heat shock protein 90-CDC37 chaperone complex is required for signaling by types I and II interferons. J Biol Chem. 2006;281(4):1876–84.

    Article  PubMed  CAS  Google Scholar 

  29. Lin C-F, Tsai C-C, Huang W-C, Wang C-Y, Tseng H-C, Wang Y, et al. IFN-γ synergizes with LPS to induce nitric oxide biosynthesis through glycogen synthase kinase-3-inhibited IL-10. J Cell Biochem. 2008;105(3):746–55.

    Article  PubMed  CAS  Google Scholar 

  30. Dalpke AH, Heeg K. Synergistic and antagonistic interactions between LPS and superantigens. J Endotoxin Res. 2003;9(1):51–4.

    PubMed  CAS  Google Scholar 

  31. Takeishi Y, Kubota I. Role of toll-like receptor mediated signaling pathway in ischemic heart. Front Biosci. 2009;14:2553–8.

    Article  PubMed  CAS  Google Scholar 

  32. Babchia N, Calipel A, Mouriaux F, Faussat A-M, Mascarelli F. 17-AAG and 17-DMAG-induced inhibition of cell proliferation through B-Raf downregulation in WTB-Raf-expressing uveal melanoma cell lines. Invest Ophthalmol Vis Sci. 2008;49(6):2348–56.

    Article  PubMed  Google Scholar 

  33. Gilkeson G, Cannon C, Oates J, Reilly C, Goldman D, Petri M. Correlation of serum measures of nitric oxide production with lupus disease activity. J Rheumatol. 1999;26(2):318–24.

    PubMed  CAS  Google Scholar 

  34. Shen H-Y, He J-C, Wang Y, Huang Q-Y, Chen J-F. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem. 2005;280(48):39962–9.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang H, Chung D, Yang Y-C, Neely L, Tsurumoto S, Fan J, et al. Identification of new biomarkers for clinical trials of Hsp90 inhibitors. Mol Cancer Ther. 2006;5(5):1256–64.

    Article  PubMed  CAS  Google Scholar 

  36. Lu Y-C, Yeh W-C, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–51.

    Article  PubMed  CAS  Google Scholar 

  37. Marsh CB, Pomerantz RP, Parker JM, Winnard AV, Mazzaferri EL, Moldovan N, et al. Regulation of monocyte survival in vitro by deposited IgG: role of macrophage colony-stimulating factor. J Immunol. 1999;162(10):6217–25.

    PubMed  CAS  Google Scholar 

  38. Ottonello L, Bertolotto M, Montecucco F, Dapino P, Dallegri F. Dexamethasone-induced apoptosis of human monocytes exposed to immune complexes. Intervention of CD95- and XIAP-dependent pathways. Int J Immunopathol Pharmacol. 2005;18(3):403–15.

    PubMed  CAS  Google Scholar 

  39. Ayrault O, Godeny MD, Dillon C, Zindy F, Fitzgerald P, Roussel MF, et al. Inhibition of Hsp90 via 17-DMAG induces apoptosis in a p53-dependent manner to prevent medulloblastoma. Proc Natl Acad Sci USA. 2009;106(40):17037–42.

    Article  PubMed  CAS  Google Scholar 

  40. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat. 2007;11(1–2):32–50.

    PubMed  Google Scholar 

  41. Patel RK, Mohan C. PI3K/AKT signaling and systemic autoimmunity. Immunol Res. 2005;31(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  42. Wu T, Mohan C. The AKT axis as a therapeutic target in autoimmune diseases. Endocr Metab Immune Disord Drug Targets. 2009;9(2):145–50.

    Article  PubMed  CAS  Google Scholar 

  43. Sizemore N, Leung S, Stark GR. Activation of phosphatidylinositol 3-Kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappa B p65/RelA subunit. Mol Cell Biol. 1999;19(7):4798–805.

    PubMed  CAS  Google Scholar 

  44. Weichhart T, Säemann MD. The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications. Ann Rheum Dis. 2008;67(Suppl 3):iii70-iii4.

    Google Scholar 

  45. Kleinert H, Pautz A, Linker K, Schwarz PM. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol. 2004;500(1–3):255–66.

    Article  PubMed  CAS  Google Scholar 

  46. Broemer M, Krappmann D, Scheidereit C. Requirement of Hsp90 activity for I[kappa]B kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-[kappa]B activation. Oncogene. 2004;23(31):5378–86.

    Article  PubMed  CAS  Google Scholar 

  47. Mohan S, Konopinski R, Yan B, Centonze VE, Natarajan M. High glucose-induced IKK-Hsp-90 interaction contributes to endothelial dysfunction. Am J Physiol Cell Physiol. 2009;296(1):C182–92.

    Article  PubMed  CAS  Google Scholar 

  48. Lee KH, Jang Y, Chung JH. Heat shock protein 90 regulates IkappaB kinase complex and NF-kappaB activation in angiotensin II-induced cardiac cell hypertrophy. Exp Mol Med. 2010;42(10):703–11.

    Article  PubMed  CAS  Google Scholar 

  49. Karkoulis PK, Stravopodis DJ, Margaritis LH, Voutsinas GE. 17-Allylamino-17-demethoxygeldanamycin induces downregulation of critical Hsp90 protein clients and results in cell cycle arrest and apoptosis of human urinary bladder cancer cells. BMC Cancer. 2010;10:481.

    Article  PubMed  Google Scholar 

  50. Madrigal-Matute J, Lopez-Franco O, Blanco-Colio LM, Munoz-Garcia B, Ramos-Mozo P, Ortega L, et al. Heat shock protein 90 inhibitors attenuate inflammatory responses in atherosclerosis. Cardiovasc Res. 2010;86(2):330–7.

    Article  PubMed  CAS  Google Scholar 

  51. Gomard T, Michaud HA, Tempe D, Thiolon K, Pelegrin M, Piechaczyk M. An NF-kappaB-dependent role for JunB in the induction of proinflammatory cytokines in LPS-activated bone marrow-derived dendritic cells. PLoS One. 2010;5(3):e9585.

    Article  PubMed  Google Scholar 

  52. Kim HR, Kang HS, Kim HD. Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB Life. 1999;48(4):429–33.

    PubMed  CAS  Google Scholar 

  53. Chaudhury S, Welch TR, Blagg BSJ. Hsp90 as a target for drug development. ChemMedChem. 2006;1(12):1331–40.

    Article  PubMed  CAS  Google Scholar 

  54. Clark CB, Rane MJ, El Mehdi D, Miller CJ, Sachleben LR Jr, Gozal E. Role of oxidative stress in geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex. Free Radic Biol Med. 2009;47(10):1440–9.

    Article  PubMed  CAS  Google Scholar 

  55. Ghoshal S, Rao I, Earp J, Jusko W, Wetzler M. Down-regulation of heat shock protein 70 improves arsenic trioxide and 17-DMAG effects on constitutive signal transducer and activator of transcription 3 activity. Cancer Chemother Pharmacol. 2010;66(4):681–9.

    Article  PubMed  CAS  Google Scholar 

  56. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol. 1997;17(9):5317–27.

    PubMed  CAS  Google Scholar 

  57. Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR. Extracellular heat shock proteins in cell signaling. FEBS Lett. 2007;581(19):3689–94.

    Article  PubMed  CAS  Google Scholar 

  58. Pockley AG, Calderwood SK, Multhoff G. The atheroprotective properties of Hsp70: a role for Hsp70-endothelial interactions? Cell Stress Chaperones. 2009;14(6):545–53.

    Article  PubMed  CAS  Google Scholar 

  59. de Jong PR, Schadenberg AW, Jansen NJ, Prakken BJ. Hsp70 and cardiac surgery: molecular chaperone and inflammatory regulator with compartmentalized effects. Cell Stress Chaperones. 2009;14(2):117–31.

    Article  PubMed  CAS  Google Scholar 

  60. Chen H, Wu Y, Zhang Y, Jin L, Luo L, Xue B, et al. Hsp70 inhibits lipopolysaccharide-induced NF-kappaB activation by interacting with TRAF6 and inhibiting its ubiquitination. FEBS Lett. 2006;580(13):3145–52.

    Article  PubMed  CAS  Google Scholar 

  61. Oates JC. The biology of reactive intermediates in systemic lupus erythematosus. Autoimmunity. 2010;43(1):56–63.

    Article  PubMed  CAS  Google Scholar 

  62. Howard M, Roux J, Lee H, Miyazawa B, Lee J-W, Gartland B, et al. Activation of the stress protein response inhibits the STAT1 signalling pathway and iNOS function in alveolar macrophages: role of Hsp90 and Hsp70. Thorax. 2010;65(4):346–53.

    Article  PubMed  Google Scholar 

  63. Antonova G, Lichtenbeld H, Xia T, Chatterjee A, Dimitropoulou C, Catravas JD. Functional significance of hsp90 complexes with NOS and sGC in endothelial cells. Clin Hemorheol Microcirc. 2007;37(1–2):19–35.

    PubMed  CAS  Google Scholar 

  64. Kiang JG, Smith JT, Agravante NG. Geldanamycin analog 17-DMAG inhibits iNOS and caspases in gamma-irradiated human T cells. Rad Res. 2009;172(3):321–30.

    Article  CAS  Google Scholar 

  65. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8(Suppl 2):S3.

    Article  PubMed  Google Scholar 

  66. Stephanou A, Isenberg DA, Akira S, Kishimoto T, Latchman DS. The nuclear factor interleukin-6 (NF-IL6) and signal transducer and activator of transcription-3 (STAT-3) signalling pathways co-operate to mediate the activation of the hsp90beta gene by interleukin-6 but have opposite effects on its inducibility by heat shock. Biochem J. 1998;330(Pt 1):189–95.

    PubMed  CAS  Google Scholar 

  67. KH Tsui, TH Feng, WC Hsieh, PL Chang, HH Juang. Expression of interleukin-6 is downregulated by 17-(allylamino)-17-demethoxygeldanamycin in human prostatic carcinoma cells. Acta Pharmacol Sin. 2008;29(11):1334–41.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the gracious assistance provided by Drs. David Caudell, Luke Achenie, Yong Woo Lee, and Liwu Li in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel K. Shimp III.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimp, S.K., Parson, C.D., Regna, N.L. et al. HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-κB pathways. Inflamm. Res. 61, 521–533 (2012). https://doi.org/10.1007/s00011-012-0442-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0442-x

Keywords

Navigation