Skip to main content
Log in

On the integrability of the wave propagator arising from the Liouville–von Neumann equation

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

The Liouville–von Neumann equation describes the change in the density matrix with time. Interestingly, this equation was recently regarded as a wave equation for wave functions but not as an equation for density functions. This setting leads to an extended form of the Schrödinger wave equation governing the motion of a quantum particle. In this paper, we obtain the integrability of the wave propagator arising from the Liouville–von Neumann equation in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, no. 223. Springer-Verlag, Berlin-New York (1976)

  2. Carles, R., Gallo, C.: WKB analysis of nonelliptic nonlinear Schrödinger equations. Commun. Contemp. Math. 22, 1950045 (2020)

    Article  MathSciNet  Google Scholar 

  3. Chen, Z.: von Neumann-Landau equation for wave functions, wave-particle duality and collapses of wave functions. arXiv:quant-ph/0703204v2 (2007)

  4. Christ, M., Kiselev, A.: Maximal functions associated to filtrations. J. Funct. Anal. 179(2), 409–425 (2001)

    Article  MathSciNet  Google Scholar 

  5. Dodson, B., Marzuola, J.L., Pausader, B., Spirn, D.P.: The profile decomposition for the hyperbolic Schrödinger BY equation. Illinois J. Math. 62(1–4), 293–320 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dumas, E., Lannes, D., Szeftel, J.: Variants of the focusing NLS equation: derivation, justification, and open problems related to filamentation. In: Laser Filamentation, pp. 19–75. CRM Series Mathematical Physics, Springer, Cham (2016)

  7. Foschi, D.: Inhomogeneous Strichartz estimates. J. Hyperbolic Differ. Equ. 2, 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  8. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Schrödinger equation revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 309–327 (1985)

    Article  MathSciNet  Google Scholar 

  9. Grafakos, L.: Classical Fourier Analysis. Springer, New York (2014)

    MATH  Google Scholar 

  10. Hörmander, L.: Estimates for translation invariant operators in \(L^p\) spaces. Acta Math. 104, 93–140 (1960)

    Article  MathSciNet  Google Scholar 

  11. Keel, M., Tao, T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  12. Klainerman, S., Machedon, M.: On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Comm. Math. Phys. 279, 169–185 (2008)

    Article  MathSciNet  Google Scholar 

  13. Landau, L.D.: Das Dämpfungsproblem in der Wellenmechanik. Z. Physik 45, 430–441 (1927)

    Article  Google Scholar 

  14. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Non-relativistic Theory. Pergamon Press, Oxford (1987)

    MATH  Google Scholar 

  15. Liu, C., Liu, M.: On the Cauchy problem for von Neumann-Landau wave equation. J. Appl. Math. Phys. 2, 1224–1332 (2014)

    Article  Google Scholar 

  16. Montgomery-Smith, S.J.: Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations. Duke Math. J. 91, 393–408 (1998)

    Article  MathSciNet  Google Scholar 

  17. von Neumann, J.: Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 11, 245–272 (1927)

    MATH  Google Scholar 

  18. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  19. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  20. Strichartz, R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MathSciNet  Google Scholar 

  21. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer-Verlag, New York (1999)

  22. Totz, N.: A justification of the modulation approximation to the 3D full water wave problem. Comm. Math. Phys. 335, 369–443 (2015)

    Article  MathSciNet  Google Scholar 

  23. Totz, N., Wu, S.: A rigorous justification of the modulation approximation to the 2D full water wave problem. Comm. Math. Phys. 310, 817–883 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihyeok Seo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Koh was supported by NRF-2019R1F1A1054310. I. Seo was supported by NRF-2019R1F1A1061316.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, Y., Lee, Y. & Seo, I. On the integrability of the wave propagator arising from the Liouville–von Neumann equation. Arch. Math. 116, 345–358 (2021). https://doi.org/10.1007/s00013-020-01556-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-020-01556-y

Keywords

Mathematics Subject Classification

Navigation