Skip to main content
Log in

Metabolism of the neuromodulator d-serine

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Over the past years, accumulating evidence has indicated that d-serine is the endogenous ligand for the glycine-modulatory binding site on the NR1 subunit of N-methyl-d-aspartate receptors in various brain areas. d-Serine is synthesized in glial cells and neurons by the pyridoxal-5′ phosphate-dependent enzyme serine racemase, and it is released upon activation of glutamate receptors. The cellular concentration of this novel messenger is regulated by both serine racemase isomerization and elimination reactions, as well as by its selective degradation catalyzed by the flavin adenine dinucleotide-containing flavoenzyme d-amino acid oxidase. Here, we present an overview of the current knowledge of the metabolism of d-serine in human brain at the molecular and cellular levels, with a specific emphasis on the brain localization and regulatory pathways of d-serine, serine racemase, and d-amino acid oxidase. Furthermore, we discuss how d-serine is involved with specific pathological conditions related to N-methyl-d-aspartate receptors over- or down-regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid β-peptide

AD:

Alzheimer’s disease

AMPA:

α-Amino-3-hydroxy-5-methylisooxazole-4-propionic acid

CNS:

Central nervous system

CP:

Choroid plexus

CSF:

Cerebrospinal fluid

DAAO:

d-Amino acid oxidase (EC 1.4.3.3)

d-DOPA:

d-3,4-Dihydroxyphenylalanine

DPFC:

Dorsolateral prefrontal cortex

FAD:

Flavin adenine dinucleotide

Golga3:

Golgin subfamily A member

GRIP:

Glutamate receptor interacting protein

PDZ:

PSD95/disc large/ZO-1

PICK1:

Protein interacting with C kinase 1

PIP2:

Phosphatidylinositol(4,5)biphosphate

PLP:

Pyridoxal-5′ phosphate

NMDAR:

N-methyl-d-aspartate receptor

NO:

Nitric oxide

SR:

Serine racemase (EC 5.1.1.18)

References

  1. Hashimoto A, Oka T, Nishikawa T (1995) Extracellular concentration of endogenous free d-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66:635–643

    CAS  PubMed  Google Scholar 

  2. Wolosker H, Sheth KN, Takahashi M, Mothet JP, Brady RO Jr, Ferris CD, Snyder SH (1999) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725

    CAS  PubMed  Google Scholar 

  3. Schell MJ, Molliver ME, Snyder SH (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952

    CAS  PubMed  Google Scholar 

  4. Danysz W, Parsons CG (1998) Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    CAS  PubMed  Google Scholar 

  5. Hashimoto A, Nishikawa T, Oka T, Takahashi K (1993) Endogenous d-serine in rat brain: N-methyl-d-aspartate receptor-related distribution and aging. J Neurochem 60:783–786

    CAS  PubMed  Google Scholar 

  6. Schell MJ, Brady RO Jr, Molliver ME, Snyder SH (1997) d-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17:1604–1615

    CAS  PubMed  Google Scholar 

  7. Ribeiro CS, Reis M, Panizzutti R, de Miranda J, Wolosker H (2002) Glial transport of the neuromodulator d-serine. Brain Res 929:202–209

    CAS  PubMed  Google Scholar 

  8. Mothet JP, Pollegioni L, Ouanounou G, Martineau M, Fossier P, Baux G (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc Natl Acad Sci USA 102:5606–5611

    CAS  PubMed  Google Scholar 

  9. Martineau M, Galli T, Baux G, Mothet JP (2008) Confocal imaging and tracking of the exocytotic routes for d-serine-mediated gliotransmission. Glia 56:1271–1284

    PubMed  Google Scholar 

  10. Oliet SH, Mothet JP (2009) Regulation of N-methyl-d-aspartate receptors by astrocytic d-serine. Neuroscience 158:275–283

    CAS  PubMed  Google Scholar 

  11. Yasuda E, Ma N, Semba R (2001) Immunohistochemical demonstration of l-serine distribution in the rat brain. Neuroreport 12:1027–1030

    CAS  PubMed  Google Scholar 

  12. Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H (2006) Neuron-derived d-serine release provides a novel means to activate N-methyl-d-aspartate receptors. J Biol Chem 281:14151–14162

    CAS  PubMed  Google Scholar 

  13. Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV (2006) Immunocytochemical analysis of d-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 53:401–411

    PubMed  Google Scholar 

  14. Dun Y, Mysona B, Itagaki S, Martin-Studdard A, Ganapathy V, Smith SB (2007) Functional and molecular analysis of d-serine transport in retinal Müller cells. Exp Eye Res 84:191–199

    CAS  PubMed  Google Scholar 

  15. Shao Z, Kamboj A, Anderson CM (2009) Functional and immunocytochemical characterization of d-serine transporters in cortical neuron and astrocyte cultures. J Neurosci Res 87:2520–2530

    CAS  PubMed  Google Scholar 

  16. Helboe L, Egebjerg J, Møller M, Thomsen C (2003) Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. Eur J Neurosci 18:2227–2238

    PubMed  Google Scholar 

  17. Matsuo H, Kanai Y, Tokunaga M, Nakata T, Chairoungdua A, Ishimine H, Tsukada S, Ooigawa H, Nawashiro H, Kobayashi Y, Fukuda J, Endou H (2004) High affinity d- and l-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neurosci Lett 358:123–126

    CAS  PubMed  Google Scholar 

  18. Xie X, Dumas T, Tang L, Brennan T, Reeder T, Thomas W, Klein RD, Flores J, O’Hara BF, Heller HC, Franken P (2005) Lack of the alanine–serine–cysteine transporter 1 causes tremors, seizures, and early postnatal death in mice. Brain Res 1052:212–221

    CAS  PubMed  Google Scholar 

  19. Schell MJ (2004) The N-methyl d-aspartate receptor glycine site and d-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 359:943–964

    CAS  PubMed  Google Scholar 

  20. Martineau M, Baux G, Mothet JP (2006) d-Serine signalling in the brain: friend and foe. Trends Neurosci 29:481–491

    CAS  PubMed  Google Scholar 

  21. Yang Y, Ge W, Chen Y, Zhang Z, Shen W, Wu C, Poo M, Duan S (2003) Contribution of astrocytes to hippocampal long-term potentiation through release of d-serine. Proc Natl Acad Sci USA 100:15194–15199

    CAS  PubMed  Google Scholar 

  22. Junjaud G, Rouaud E, Turpin F, Mothet JP, Billard JM (2006) Age-related effects of the neuromodulator d-serine on neurotransmission and synaptic potentiation in the CA1 hippocampal area of the rat. J Neurochem 98:1159–1166

    CAS  PubMed  Google Scholar 

  23. Panatier A, Theodosis DT, Mothet J-P, Touquet B, Pollegioni L, Poulain DA, Oliet SHR (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

    CAS  PubMed  Google Scholar 

  24. Strísovský K, Jirásková J, Barinka C, Majer P, Rojas C, Slusher BS, Konvalinka J (2003) Mouse brain serine racemase catalyzes specific elimination of l-serine to pyruvate. FEBS Lett 535:44–48

    PubMed  Google Scholar 

  25. Foltyn VN, Bendikov I, De Miranda J, Panizzutti R, Dumin E, Shleper M, Li P, Toney MD, Kartvelishvily E, Wolosker H (2005) Serine racemase modulates intracellular d-serine levels through an alpha, beta-elimination activity. J BiolChem 280:1754–1763

    CAS  Google Scholar 

  26. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci USA 96:13409–13414

    CAS  PubMed  Google Scholar 

  27. Panizzutti R, De Miranda J, Ribeiro CS, Engelender S, Wolosker H (2001) A new strategy to decrease N-methyl-d-aspartate (NMDA) receptor coactivation: inhibition of d-serine synthesis by converting serine racemase into an eliminase. Proc Natl Acad Sci USA 98:5294–5299

    CAS  PubMed  Google Scholar 

  28. De Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-d-aspartate (NMDA) receptor coagonist d-serine. Proc Natl Acad Sci USA 99:14542–14547

    PubMed  Google Scholar 

  29. Cook SP, Galve-Roperh I, Martínez del Pozo A, Rodríguez-Crespo I (2002) Direct calcium binding results in activation of brain serine racemase. J Biol Chem 277:27782–27792

    CAS  PubMed  Google Scholar 

  30. Neidle A, Dunlop DS (2002) Allosteric regulation of mouse brain serine racemase. Neurochem Res 27:1719–1724

    CAS  PubMed  Google Scholar 

  31. Dunlop DS, Neidle A (2005) Regulation of serine racemase activity by amino acids. Brain Res Mol Brain Res 133:208–214

    CAS  PubMed  Google Scholar 

  32. Strísovský K, Jirásková J, Mikulová A, Rulísek L, Konvalinka J (2005) Dual substrate and reaction specificity in mouse serine racemase: identification of high-affinity dicarboxylate substrate and inhibitors and analysis of the beta-eliminase activity. Biochemistry 44:13091–13100

    PubMed  Google Scholar 

  33. De Miranda J, Santoro A, Engelender S, Wolosker H (2000) Human serine racemase: molecular cloning, genomic organization and functional analysis. Gene 256:183–188

    PubMed  Google Scholar 

  34. Xia M, Liu Y, Figueroa DJ, Chiu CS, Wei N, Lawlor AM, Lu P, Sur C, Koblan KS, Connolly TM (2004) Characterization and localization of a human serine racemase. Brain Res Mol Brain Res 125:96–104

    CAS  PubMed  Google Scholar 

  35. Yamada K, Ohnishi T, Hashimoto K, Ohba H, Iwayama-Shigeno Y, Toyoshima M, Okuno A, Takao H, Toyota T, Minabe Y, Nakamura K, Shimizu E, Itokawa M, Mori N, Iyo M, Yoshikawa T (2005) Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and d-serine levels. Biol Psychiatry 57:1493–1503

    CAS  PubMed  Google Scholar 

  36. Hoffman HE, Jirásková J, Ingr M, Zvelebil M, Konvalinka J (2009) Recombinant human serine racemase: enzymologic characterization and comparison with its mouse ortholog. Protein Expr Purif 63:62–67

    CAS  PubMed  Google Scholar 

  37. Baumgart F, Mancheño JM, Rodríguez-Crespo I (2007) Insights into the activation of brain serine racemase by the multi-PDZ domain glutamate receptor interacting protein, divalent cations and ATP. FEBS J 274:4561–4571

    CAS  PubMed  Google Scholar 

  38. Baumgart F, Rodríguez-Crespo I (2008) d-amino acids in the brain: the biochemistry of brain serine racemase. FEBS J 275:3538–3545

    CAS  PubMed  Google Scholar 

  39. Pilone MS (2000) d-Amino acid oxidase: new findings. Cell Mol Life Sci 57:1732–1747

    CAS  PubMed  Google Scholar 

  40. Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394

    CAS  PubMed  Google Scholar 

  41. Krebs HA (1935) Metabolism of amino-acids: deamination of amino-acids. Biochem J 29:1620–1644

    CAS  PubMed  Google Scholar 

  42. Hashimoto A, Nishikawa T, Hayashi T, Fujii N, Harada K, Oka T, Takahashi K (1992) The presence of free d-serine in rat brain. FEBS Lett 296:33–36

    CAS  PubMed  Google Scholar 

  43. Hashimoto A, Nishikawa T, Konno R, Niwa A, Yasumura Y, Oka T, Takahashi K (1993) Free d-serine, d-aspartate and d-alanine in central nervous system and serum in mutant mice lacking d-amino acid oxidase. Neurosci Lett 152:33–36

    CAS  PubMed  Google Scholar 

  44. Nagata Y, Yamamoto K, Shimojo T, Konno R, Yasumura Y, Akino T (1992) The presence of free d-alanine, d-proline and d-serine in mice. Biochim Biophys Acta 1115:208–211

    CAS  PubMed  Google Scholar 

  45. Nagata Y, Horiike K, Maeda T (1994) Distribution of free d-serine in vertebrate brains. Brain Res 634:291–295

    CAS  PubMed  Google Scholar 

  46. Konno R (2001) Assignment of d-amino-acid oxidase gene to a human and a mouse chromosome. Amino Acids 20:401–408

    CAS  PubMed  Google Scholar 

  47. Momoi K, Fukui K, Watanabe F, Miyake Y (1988) Molecular cloning and sequence analysis of cDNA encoding human kidney d-amino acid oxidase. FEBS Lett 238:180–184

    CAS  PubMed  Google Scholar 

  48. Romano D, Molla G, Pollegioni L, Marinelli F (2009) Optimization of human d-amino acid oxidase expression in Escherichia coli. Protein Expr Purif 68:72–78

    CAS  PubMed  Google Scholar 

  49. Molla G, Sacchi S, Bernasconi M, Pilone MS, Fukui K, Pollegioni L (2006) Characterization of human d-amino acid oxidase. FEBS Lett 580:2358–2364

    CAS  PubMed  Google Scholar 

  50. Caldinelli L, Molla G, Sacchi S, Pilone MS, Pollegioni L (2009) Relevance of weak flavin binding in human d-amino acid oxidase. Protein Sci 18:801–810

    CAS  PubMed  Google Scholar 

  51. Kawazoe T, Tsuge H, Imagawa T, Aki K, Kuramitsu S, Fukui K (2007) Structural basis of d-DOPA oxidation by d-amino acid oxidase: alternative pathway for dopamine biosynthesis. Biochem Biophys Res Commun 355:385–391

    CAS  PubMed  Google Scholar 

  52. Kawazoe T, Tsuge H, Pilone MS, Fukui K (2006) Crystal structure of human d-amino acid oxidase: context-dependent variability of the backbone conformation of the VAAGL hydrophobic stretch located at the si-face of the flavin ring. Protein Sci 15:2708–2717

    CAS  PubMed  Google Scholar 

  53. Mattevi A, Vanoni MA, Todone F, Rizzi M, Teplyakov A, Coda A, Bolognesi M, Curti B (1996) Crystal structure of d-amino acid oxidase: a case of active site mirror-image convergent evolution with flavocytochrome b2. Proc Natl Acad Sci USA 93:7496–7501

    CAS  PubMed  Google Scholar 

  54. Mizutani H, Miyahara I, Hirotsu K, Nishina Y, Shiga K, Setoyama C, Miura R (1996) Three-dimensional structure of porcine kidney d-amino acid oxidase at 3.0 Å resolution. J Biochem 120:14–17

    CAS  PubMed  Google Scholar 

  55. Shoji K, Mariotto S, Ciampa AR, Suzuki H (2006) Regulation of serine racemase activity by d-serine and nitric oxide in human glioblastoma cells. Neurosci Lett 392:75–78

    CAS  PubMed  Google Scholar 

  56. Shoji K, Mariotto S, Ciampa AR, Suzuki H (2006) Mutual regulation between serine and nitric oxide metabolism in human glioblastoma cells. Neurosci Lett 394:163–167

    CAS  PubMed  Google Scholar 

  57. Mustafa AK, Kumar M, Selvakumar B, Ho GP, Ehmsen JT, Barrow RK, Amzel LM, Snyder SH (2007) Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of d-serine formation. Proc Natl Acad Sci USA 104:2950–2955

    CAS  PubMed  Google Scholar 

  58. Kim PM, Aizawa H, Kim PS, Huang AS, Wickramasinghe SR, Kashani AH, Barrow RK, Huganir RL, Ghosh A, Snyder SH (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA 102:2105–2110

    CAS  PubMed  Google Scholar 

  59. Hung AY, Sheng M (2002) PDZ domains: structural modules for protein complex assembly. J Biol Chem 277:5699–5702

    CAS  PubMed  Google Scholar 

  60. Fujii K, Maeda K, Hikida T, Mustafa AK, Balkissoon R, Xia J, Yamada T, Ozeki Y, Kawahara R, Okawa M, Huganir RL, Ujike H, Snyder SH, Sawa A (2006) Serine racemase binds to PICK1: potential relevance to schizophrenia. Mol Psychiatry 11:150–157

    CAS  PubMed  Google Scholar 

  61. Pan L, Wu H, Shen C, Shi Y, Jin W, Xia J, Zhang M (2007) Clustering and synaptic targeting of PICK1 requires direct interaction between the PDZ domain and lipid membranes. EMBO J 26:4576–4587

    CAS  PubMed  Google Scholar 

  62. Hikida T, Mustafa AK, Maeda K, Fujii K, Barrow RK, Saleh M, Huganir RL, Snyder SH, Hashimoto K, Sawa A (2008) Modulation of d-serine levels in brains of mice lacking PICK1. Biol Psychiatry 63:997–1000

    CAS  PubMed  Google Scholar 

  63. Dumin E, Bendikov I, Foltyn VN, Misumi Y, Ikehara Y, Kartvelishvily E, Wolosker H (2006) Modulation of d-serine levels via ubiquitin-dependent proteasomal degradation of serine racemase. J Biol Chem 281:20291–20302

    CAS  PubMed  Google Scholar 

  64. Balan L, Foltyn VN, Zehl M, Dumin E, Dikopoltsev E, Knoh D, Ohno Y, Kihara A, Jensen ON, Radzishevsky IS, Wolosker H (2009) Feedback inactivation of d-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proc NatlAcad Sci USA 106:7589–7594

    CAS  Google Scholar 

  65. Mustafa AK, van Rossum DB, Patterson RL, Maag D, Ehmsen JT, Gazi SK, Chakraborty A, Barrow RK, Amzel LM, Snyder SH (2009) Glutamatergic regulation of serine racemase via reversal of PIP2 inhibition. Proc Natl Acad Sci USA 106:2921–2926

    CAS  PubMed  Google Scholar 

  66. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard FP, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon AM, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan JJ, Bouillot M, Sambucy JL, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham PC, Straub RE, Weinberger DR, Cohen N, Cohen D (2002) Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99:13675–13680

    CAS  PubMed  Google Scholar 

  67. Liu X, He G, Wang X, Chen Q, Qian X, Lin W, Li D, Gu N, Feng G, He L (2004) Association of DAAO with schizophrenia in the Chinese population. Neurosci Lett 369:228–233

    CAS  PubMed  Google Scholar 

  68. Molla G, Bernasconi M, Sacchi S, Pilone MS, Pollegioni L (2006) Expression in Escherichia coli and in vitro refolding of the human protein pLG72. Protein Expr Purif 46:150–155

    CAS  PubMed  Google Scholar 

  69. Sacchi S, Bernasconi M, Martineau M, Mothet JP, Ruzzene M, Pilone MS, Pollegioni L, Molla G (2008) pLG72 modulates intracellular d-serine levels through its interaction with d-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem 283:22244–22256

    CAS  PubMed  Google Scholar 

  70. Kvajo M, Dhilla A, Swor DE, Karayiorgou M, Gogos JA (2008) Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol Psychiatry 13:685–696

    CAS  PubMed  Google Scholar 

  71. Otte DM, Bilkei-Gorzó A, Filiou MD, Turck CW, Yilmaz O, Holst MI, Schilling K, Abou-Jamra R, Schumacher J, Benzel I, Kunz WS, Beck H, Zimmer A (2009) Behavioral changes in G72/G30 transgenic mice. Eur Neuropsychopharmacol 19:339–348

    CAS  PubMed  Google Scholar 

  72. Konno R (2003) Rat cerebral serine racemase: amino acid deletion and truncation at carboxy terminus. Neurosci Lett 349:111–114

    CAS  PubMed  Google Scholar 

  73. Wu SZ, Bodles AM, Porter MM, Griffin WS, Basile AS, Barger SW (2004) Induction of serine racemase expression and d-serine release from microglia by amyloid beta-peptide. J Neuroinflammation 1:2. doi:10.1186/1742-2094-1-2

    PubMed  Google Scholar 

  74. Yoshikawa M, Nakajima K, Takayasu N, Noda S, Sato Y, Kawaguchi M, Oka T, Kobayashi H, Hashimoto A (2006) Expression of the mRNA and protein of serine racemase in primary cultures of rat neurons. Eur J Pharmacol 548:74–76

    CAS  PubMed  Google Scholar 

  75. Yoshikawa M, Takayasu N, Hashimoto A, Sato Y, Tamaki R, Tsukamoto H, Kobayashi H, Noda S (2007) The serine racemase mRNA is predominantly expressed in rat brain neurons. Arch Histol Cytol 70:127–134

    CAS  PubMed  Google Scholar 

  76. Dun Y, Duplantier J, Roon P, Martin PM, Ganapathy V, Smith SB (2008) Serine racemase expression and d-serine content are developmentally regulated in neuronal ganglion cells of the retina. J Neurochem 104:970–978

    CAS  PubMed  Google Scholar 

  77. Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR, Miller RF (2003) d-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 100:6789–6794

    CAS  PubMed  Google Scholar 

  78. Wolosker H, Dumin E, Balan L, Foltyn VN (2008) d-amino acids in the brain: d-serine in neurotransmission and neurodegeneration. FEBS J 275:3514–3526

    CAS  PubMed  Google Scholar 

  79. Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, Hongou K, Miyawaki T, Mori H (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510:641–654

    CAS  PubMed  Google Scholar 

  80. Hepner F, Pollak A, Ulfig N, Yae-Kyung M, Lubec G (2005) Mass spectrometrical analysis of human serine racemase in foetal brain. J Neural Transm 112:805–811

    CAS  PubMed  Google Scholar 

  81. Neims AH, Zieverink WD, Smilack JD (1966) Distribution of d-amino acid oxidase in bovine and human nervous tissues. J Neurochem 13:163–168

    CAS  PubMed  Google Scholar 

  82. Goldstein DB (1966) d-amino acid oxidase in brain: distribution in several species and inhibition by pentobarbitone. J Neurochem 13:1011–1016

    CAS  PubMed  Google Scholar 

  83. Arnold G, Liscum L, Holtzman E (1979) Ultrastructural localization of d-amino acid oxidase in microperoxisomes of the rat nervous system. J Histochem Cytochem 27:735–745

    CAS  PubMed  Google Scholar 

  84. Horiike K, Tojo H, Arai R, Yamano T, Nozaki M, Maeda T (1987) Localization of d-amino acid oxidase in Bergmann glial cells and astrocytes of rat cerebellum. Brain Res Bull 19:587–596

    CAS  PubMed  Google Scholar 

  85. Horiike K, Tojo H, Arai R, Nozaki M, Maeda T (1994) d-amino-acid oxidase is confined to the lower brain stem and cerebellum in rat brain: regional differentiation of astrocytes. Brain Res 652:297–303

    CAS  PubMed  Google Scholar 

  86. Kappor R, Kapoor V (1997) Distribution of d-amino acid oxidase (DAO) activity in the medulla and thoracic spinal cord of the rat: implications for a role for d-serine in autonomic function. Brain Res 771:351–355

    CAS  PubMed  Google Scholar 

  87. Moreno S, Nardacci R, Cimini A, Cerù MP (1999) Immunocytochemical localization of d-amino acid oxidase in rat brain. J Neurocytol 28:169–185

    CAS  PubMed  Google Scholar 

  88. Urai Y, Jinnouchi O, Kwak KT, Suzue A, Nagahiro S, Fukui K (2002) Gene expression of d-amino acid oxidase in cultured rat astrocytes: regional and cell type specific expression. Neurosci Lett 324:101–104

    CAS  PubMed  Google Scholar 

  89. Cristiano L, Bernardo A, Cerù MP (2001) Peroxisome proliferator-activated receptors (PPARs) and peroxisomes in rat cortical and cerebellar astrocytes. J Neurocytol 30:671–683

    CAS  PubMed  Google Scholar 

  90. Verrall L, Walker M, Rawlings N, Benzel I, Kew JN, Harrison PJ, Burnet PW (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26:1657–1669

    PubMed  Google Scholar 

  91. Ono K, Shishido Y, Park HK, Kawazoe T, Iwana S, Chung SP, Abou El-Magd RM, Yorita K, Okano M, Watanabe T, Sano N, Bando Y, Arima K, Sakai T, Fukui K (2009) Potential pathophysiological role of d-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm 116:1335–1347

    CAS  PubMed  Google Scholar 

  92. Rutter AR, Fradley RL, Garrett EM, Chapman KL, Lawrence JM, Rosahl TW, Patel S (2007) Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating d-serine reuptake in the mouse CNS. Eur J Neurosci 25:1757–1766

    PubMed  Google Scholar 

  93. Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K (2001) Determination of free d-aspartic acid, d-serine and d-alanine in the brain of mutant mice lacking d-amino acid oxidase activity. J Chromatogr B Biomed Sci Appl 757:119–125

    CAS  PubMed  Google Scholar 

  94. Wu S, Basile AS, Barger SW (2007) Induction of serine racemase expression and d-serine release from microglia by secreted amyloid precursor protein (sAPP). Curr Alzheimer Res 4:243–251

    PubMed  Google Scholar 

  95. Inoue R, Hashimoto K, Harai T, Mori H (2008) NMDA- and beta-amyloid1–42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 28:14486–14491

    CAS  PubMed  Google Scholar 

  96. Sasabe J, Chiba T, Yamada M, Okamoto K, Nishimoto I, Matsuoka M, Aiso S (2007) d-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 26:4149–4159

    CAS  PubMed  Google Scholar 

  97. Katsuki H, Nonaka M, Shirakawa H, Kume T, Akaike A (2004) Endogenous d-serine is involved in induction of neuronal death by N-methyl-d-aspartate and simulated ischemia in rat cerebrocortical slices. J Pharmacol Exp Ther 311:836–844

    CAS  PubMed  Google Scholar 

  98. Katsuki H, Watanabe Y, Fujimoto S, Kume T, Akaike A (2007) Contribution of endogenous glycine and d-serine to excitotoxic and ischemic cell death in rat cerebrocortical slice cultures. Life Sci 81:740–749

    CAS  PubMed  Google Scholar 

  99. Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52:139–153

    CAS  PubMed  Google Scholar 

  100. Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    CAS  PubMed  Google Scholar 

  101. Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AH, Roder JC (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

    CAS  PubMed  Google Scholar 

  102. Basu AC, Tsai GE, Ma CL, Ehmsen JT, Mustafa AK, Jiang ZI, Benneyworth MA, Froimowitz MP, Lange N, Snyder SH, Bergeron R, Coyle JT (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14:719–727

    CAS  PubMed  Google Scholar 

  103. Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003) Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 60:572–576

    CAS  PubMed  Google Scholar 

  104. Bendikov I, Nadir S, Amar S, Panizzutti R, De Miranda J, Wolosker H, Agam G (2007) A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr Res 90:41–51

    PubMed  Google Scholar 

  105. Steffek AE, Haroutunian V, Meador-Woodruff JH (2006) Serine racemase protein expression in cortex and hippocampus in schizophrenia. Neuroreport 17:1181–1185

    CAS  PubMed  Google Scholar 

  106. Burnet PW, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M, Harrison PJ (2008) d-Amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry 13:658–660

    CAS  PubMed  Google Scholar 

  107. Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R (2008) Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 101:76–83

    PubMed  Google Scholar 

  108. Ohi K, Hashimoto R, Yasuda Y, Yoshida T, Takahashi H, Iike N, Fukumoto M, Takamura H, Iwase M, Kamino K, Ishii R, Kazui H, Sekiyama R, Kitamura Y, Azechi M, Ikezawa K, Kurimoto R, Kamagata E, Tanimukai H, Tagami S, Morihara T, Ogasawara M, Okochi M, Tokunaga H, Numata S, Ikeda M, Ohnuma T, Ueno S, Fukunaga T, Tanaka T, Kudo T, Arai H, Ohmori T, Iwata N, Ozaki N, Takeda M (2009) Association study of the G72 gene with schizophrenia in a Japanese population: a multicenter study. Schizophr Res 109:80–85

    PubMed  Google Scholar 

  109. Opgen-Rhein C, Lencz T, Burdick KE, Neuhaus AH, DeRosse P, Goldberg TE, Malhotra AK (2008) Genetic variation in the DAOA gene complex: impact on susceptibility for schizophrenia and on cognitive performance. Schizophr Res 103:169–177

    PubMed  Google Scholar 

  110. Goldberg TE, Straub RE, Callicott JH, Hariri A, Mattay VS, Bigelow L, Coppola R, Egan MF, Weinberger DR (2006) The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 31:2022–2032

    CAS  PubMed  Google Scholar 

  111. Ohnuma T, Shibata N, Maeshima H, Baba H, Hatano T, Hanzawa R, Arai H (2009) Association analysis of glycine- and serine-related genes in a Japanese population of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 33:511–518

    CAS  PubMed  Google Scholar 

  112. Goltsov AY, Loseva JG, Andreeva TV, Grigorenko AP, Abramova LI, Kaleda VG, Orlova VA, Moliaka YK, Rogaev EI (2006) Polymorphism in the 5′-promoter region of serine racemase gene in schizophrenia. Mol Psychiatry 11:325–326

    CAS  PubMed  Google Scholar 

  113. Morita Y, Ujike H, Tanaka Y, Otani K, Kishimoto M, Morio A, Kotaka T, Okahisa Y, Matsushita M, Morikawa A, Hamase K, Zaitsu K, Kuroda S (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61:1200–1203

    CAS  PubMed  Google Scholar 

  114. Yoshikawa M, Shinomiya T, Takayasu N, Tsukamoto H, Kawaguchi M, Kobayashi H, Oka T, Hashimoto A (2008) Long-term treatment with morphine increases the d-serine content in the rat brain by regulating the mRNA and protein expressions of serine racemase and d-amino acid oxidase. J Pharmacol Sci 107:270–276

    CAS  PubMed  Google Scholar 

  115. Turpin FR, Potier B, Dulong JR, Sinet PM, Alliot J, Oliet SH, Dutar P, Epelbaum J, Mothet JP, Billard JM (2009) Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2009.09.001. Epub ahead of print

Download references

Acknowledgments

This work was supported by grants from Fondo di Ateneo per la Ricerca to L. Pollegioni and S. Sacchi, and from Fondazione CARIPLO to L. Pollegioni. We are grateful for the support of Consorzio Interuniversitario per le Biotecnologie and the Centro di Ricerca in Biotecnologie per la Salute Umana (Università degli studi dell’Insubria). The authors are grateful to all members of their laboratory and particularly to Mirella Pilone, Gianluca Molla (even for help in preparing Fig. 3), Laura Caldinelli, and Pamela Cappelletti for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredano Pollegioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollegioni, L., Sacchi, S. Metabolism of the neuromodulator d-serine. Cell. Mol. Life Sci. 67, 2387–2404 (2010). https://doi.org/10.1007/s00018-010-0307-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0307-9

Keywords

Navigation