Skip to main content
Log in

Interkinetic nuclear migration: beyond a hallmark of neurogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Interkinetic nuclear migration (INM) is an oscillatory nuclear movement that is synchronized with the progression of the cell cycle. The efforts of several researchers, following the first report of INM in 1935, have revealed many of the molecular mechanisms of this fascinating phenomenon linking the timing of the cell cycle and nuclear positioning in tissue. Researchers are now faced with a more fundamental question: is INM important for tissue, particularly brain, development? In this review, I summarize the current understanding of the regulatory mechanisms governing INM, investigations involving several different tissues and species, and possible explanations for how nuclear movement affects cell-fate determination and tissue formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sauer FC (1935) Mitosis in the neural tube. J Comp Neurol 62:377–405

    Article  Google Scholar 

  2. Sauer ME, Chittenden AC (1959) Deoxyribonucleic acid content of cell nuclei in the neural tube of the chick embryo: evidence for intermitotic migration of nuclei. Exp Cell Res 16:1–6

    Article  PubMed  CAS  Google Scholar 

  3. Sauer ME, Walker BE (1959) Radioautographic study of interkinetic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101:557–560

    PubMed  CAS  Google Scholar 

  4. Sidman RL, Miale IL, Feder N (1959) Cell proliferation and migration in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp Neurol 1:322–333

    Article  PubMed  CAS  Google Scholar 

  5. Fujita S (1962) Kinetics of cellular proliferation. Exp Cell Res 28:52–60

    Article  PubMed  CAS  Google Scholar 

  6. Chenn A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641

    Article  PubMed  CAS  Google Scholar 

  7. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  PubMed  CAS  Google Scholar 

  8. Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    Article  PubMed  CAS  Google Scholar 

  9. Messier PE, Auclair C (1974) Effect of cytochalasin B on interkinetic nuclear migration in the chick embryo. Dev Biol 36:218–223

    Article  PubMed  CAS  Google Scholar 

  10. Murciano A, Zamora J, Lopez-Sanchez J, Frade JM (2002) Interkinetic nuclear movement may provide spatial clues to the regulation of neurogenesis. Mol Cell Neurosci 21:285–300

    Article  PubMed  CAS  Google Scholar 

  11. Langman J, Guerrant RL, Freeman BG (1966) Behavior of neuro-epithelial cells during closure of the neural tube. J Comp Neurol 127:399–411

    Article  PubMed  CAS  Google Scholar 

  12. Karfunkel P (1972) The activity of microtubules and microfilaments in neurulation in the chick. J Exp Zool 181:289–301

    Article  PubMed  CAS  Google Scholar 

  13. Ueno M, Katayama K, Yamauchi H, Nakayama H, Doi K (2006) Cell cycle progression is required for nuclear migration of neural progenitor cells. Brain Res 1088:57–67

    Article  PubMed  CAS  Google Scholar 

  14. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  PubMed  CAS  Google Scholar 

  15. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  PubMed  CAS  Google Scholar 

  16. Taverna E, Huttner WB (2010) Neural progenitor nuclei IN motion. Neuron 67:906–914

    Article  PubMed  CAS  Google Scholar 

  17. Reiner O, Sapir T, Gerlitz G (2012) Interkinetic nuclear movement in the ventricular zone of the cortex. J Mol Neurosci 46:516–526

    Article  PubMed  CAS  Google Scholar 

  18. Tsai JW, Lian WN, Kemal S, Kriegstein AR, Vallee RB (2010) Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat Neurosci 13:1463–1471

    Article  PubMed  CAS  Google Scholar 

  19. Schenk J, Wilsch-Brauninger M, Calegari F, Huttner WB (2009) Myosin II is required for interkinetic nuclear migration of neural progenitors. Proc Natl Acad Sci USA 106:16487–16492

    Article  PubMed  CAS  Google Scholar 

  20. Kosodo Y, Suetsugu T, Suda M, Mimori-Kiyosue Y, Toida K, Baba SA, Kimura A, Matsuzaki F (2011) Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. EMBO J 30:1690–1704

    Article  PubMed  CAS  Google Scholar 

  21. Norden C, Young S, Link BA, Harris WA (2009) Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 138:1195–1208

    Article  PubMed  CAS  Google Scholar 

  22. Leung L, Klopper AV, Grill SW, Harris WA, Norden C (2011) Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia. Development 138:5003–5013

    Article  PubMed  CAS  Google Scholar 

  23. Burke B, Roux KJ (2009) Nuclei take a position: managing nuclear location. Dev Cell 17:587–597

    Article  PubMed  CAS  Google Scholar 

  24. Tsai JW, Chen Y, Kriegstein AR, Vallee RB (2005) LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol 170:935–945

    Article  PubMed  CAS  Google Scholar 

  25. Cappello S, Monzo P, Vallee RB (2011) NudC is required for interkinetic nuclear migration and neuronal migration during neocortical development. Dev Biol 357:326–335

    Article  PubMed  CAS  Google Scholar 

  26. Del Bene F, Wehman AM, Link BA, Baier H (2008) Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient. Cell 134:1055–1065

    Article  PubMed  Google Scholar 

  27. Morris SM, Albrecht U, Reiner O, Eichele G, Yu-Lee LY (1998) The lissencephaly gene product Lis1, a protein involved in neuronal migration, interacts with a nuclear movement protein, NudC. Curr Biol 8:603–606

    Article  PubMed  CAS  Google Scholar 

  28. Aumais JP, Tunstead JR, McNeil RS, Schaar BT, McConnell SK, Lin SH, Clark GD, Yu-Lee LY (2001) NudC associates with Lis1 and the dynein motor at the leading pole of neurons. J Neurosci 21:RC187

    PubMed  CAS  Google Scholar 

  29. Chenn A, Zhang YA, Chang BT, McConnell SK (1998) Intrinsic polarity of mammalian neuroepithelial cells. Mol Cell Neurosci 11:183–193

    Article  PubMed  CAS  Google Scholar 

  30. Distel M, Hocking JC, Volkmann K, Koster RW (2010) The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J Cell Biol 191:875–890

    Article  PubMed  CAS  Google Scholar 

  31. Xie Z, Moy LY, Sanada K, Zhou Y, Buchman JJ, Tsai LH (2007) Cep120 and TACCs control interkinetic nuclear migration and the neural progenitor pool. Neuron 56:79–93

    Article  PubMed  CAS  Google Scholar 

  32. Ge X, Frank CL, Calderon de Anda F, Tsai LH (2010) Hook3 interacts with PCM1 to regulate pericentriolar material assembly and the timing of neurogenesis. Neuron 65:191–203

    Article  PubMed  CAS  Google Scholar 

  33. Tamai H, Shinohara H, Miyata T, Saito K, Nishizawa Y, Nomura T, Osumi N (2007) Pax6 transcription factor is required for the interkinetic nuclear movement of neuroepithelial cells. Genes Cells 12:983–996

    Article  PubMed  CAS  Google Scholar 

  34. Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187

    Article  PubMed  CAS  Google Scholar 

  35. Yu J, Lei K, Zhou M, Craft CM, Xu G, Xu T, Zhuang Y, Xu R, Han M (2011) KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum Mol Gen 20:1061–1073

    Article  PubMed  CAS  Google Scholar 

  36. Baye LM, Link BA (2008) Nuclear migration during retinal development. Brain Res 1192:29–36

    Article  PubMed  CAS  Google Scholar 

  37. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638

    Article  PubMed  CAS  Google Scholar 

  38. Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10:865–868

    Article  PubMed  CAS  Google Scholar 

  39. Bellion A, Baudoin JP, Alvarez C, Bornens M, Metin C (2005) Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 25:5691–5699

    Article  PubMed  CAS  Google Scholar 

  40. Gruss OJ, Wittmann M, Yokoyama H, Pepperkok R, Kufer T, Sillje H, Karsenti E, Mattaj IW, Vernos I (2002) Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 4:871–879

    Article  PubMed  CAS  Google Scholar 

  41. Schatz CA, Santarella R, Hoenger A, Karsenti E, Mattaj IW, Gruss OJ, Carazo-Salas RE (2003) Importin alpha-regulated nucleation of microtubules by TPX2. EMBO J 22:2060–2070

    Article  PubMed  CAS  Google Scholar 

  42. Gruss OJ, Vernos I (2004) The mechanism of spindle assembly: functions of Ran and its target TPX2. J Cell Biol 166:949–955

    Article  PubMed  CAS  Google Scholar 

  43. Cappello S, Attardo A, Wu X, Iwasato T, Itohara S, Wilsch-Brauninger M, Eilken HM, Rieger MA, Schroeder TT, Huttner WB et al (2006) The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci 9:1099–1107

    Article  PubMed  CAS  Google Scholar 

  44. Minobe S, Sakakibara A, Ohdachi T, Kanda R, Kimura M, Nakatani S, Tadokoro R, Ochiai W, Nishizawa Y, Mizoguchi A et al (2009) Rac is involved in the interkinetic nuclear migration of cortical progenitor cells. Neurosci Res 63:294–301

    Article  PubMed  CAS  Google Scholar 

  45. Govek EE, Hatten ME, Van Aelst L (2011) The role of Rho GTPase proteins in CNS neuronal migration. Dev Neurobiol 71:528–553

    Article  PubMed  CAS  Google Scholar 

  46. Niwayama R, Kimura A (2012) A cellular funicular: a hydrodynamic coupling between the anterior- and posterior-directed cytoplasmic flows. Worm (in press)

  47. Fujita S (1960) Mitotic pattern and histogenesis of the central nervous system. Nature 185:702–703

    Article  PubMed  CAS  Google Scholar 

  48. Agathocleous M, Harris WA (2009) From progenitors to differentiated cells in the vertebrate retina. Annu Rev Cell Dev Biol 25:45–69

    Article  PubMed  CAS  Google Scholar 

  49. Saito K, Kawaguchi A, Kashiwagi S, Yasugi S, Ogawa M, Miyata T (2003) Morphological asymmetry in dividing retinal progenitor cells. Dev Growth Differ 45:219–229

    Article  PubMed  Google Scholar 

  50. Pearson RA, Luneborg NL, Becker DL, Mobbs P (2005) Gap junctions modulate interkinetic nuclear movement in retinal progenitor cells. J Neurosci 25:10803–10814

    Article  PubMed  CAS  Google Scholar 

  51. Becker DL, Webb KF, Thrasivoulou C, Lin CC, Nadershahi R, Tsakiri N, Cook JE (2007) Multiphoton imaging of chick retinal development in relation to gap junctional communication. J Physiol 585:711–719

    Article  PubMed  CAS  Google Scholar 

  52. Baye LM, Link BA (2007) Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J Neurosci 27:10143–10152

    Article  PubMed  CAS  Google Scholar 

  53. Bort R, Signore M, Tremblay K, Martinez Barbera JP, Zaret KS (2006) Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol 290:44–56

    Article  PubMed  CAS  Google Scholar 

  54. Grosse AS, Pressprich MF, Curley LB, Hamilton KL, Margolis B, Hildebrand JD, Gumucio DL (2011) Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development 138:4423–4432

    Article  PubMed  CAS  Google Scholar 

  55. Meyer EJ, Ikmi A, Gibson MC (2011) Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia. Curr Biol 21:485–491

    Article  PubMed  CAS  Google Scholar 

  56. Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69:235–254

    Article  PubMed  CAS  Google Scholar 

  57. Nakanishi N, Renfer E, Technau U, Rentzsch F (2012) Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 139:347–357

    Article  PubMed  CAS  Google Scholar 

  58. Huttner WB, Kosodo Y (2005) Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. Curr Opin Cell Biol 17:648–657

    Article  PubMed  CAS  Google Scholar 

  59. Kosodo Y, Huttner WB (2009) Basal process and cell divisions of neural progenitors in the developing brain. Dev Growth Differ 51:251–261

    Article  PubMed  Google Scholar 

  60. Kosodo Y, Roper K, Haubensak W, Marzesco AM, Corbeil D, Huttner WB (2004) Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J 23:2314–2324

    Article  PubMed  CAS  Google Scholar 

  61. Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, Matsuzaki F (2008) Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol 10:93–101

    Article  PubMed  CAS  Google Scholar 

  62. Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–955

    Article  PubMed  CAS  Google Scholar 

  63. Fish JL, Kosodo Y, Enard W, Paabo S, Huttner WB (2006) Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci USA 103:10438–10443

    Article  PubMed  CAS  Google Scholar 

  64. Alexandre P, Reugels AM, Barker D, Blanc E, Clarke JD (2010) Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube. Nat Neurosci 13:673–679

    Article  PubMed  CAS  Google Scholar 

  65. Shitamukai A, Konno D, Matsuzaki F (2011) Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J Neurosci 31:3683–3695

    Article  PubMed  CAS  Google Scholar 

  66. Kosodo Y, Toida K, Dubreuil V, Alexandre P, Schenk J, Kiyokage E, Attardo A, Mora-Bermudez F, Arii T, Clarke JD et al (2008) Cytokinesis of neuroepithelial cells can divide their basal process before anaphase. EMBO J 27:3151–3163

    Article  PubMed  CAS  Google Scholar 

  67. Haubst N, Georges-Labouesse E, De Arcangelis A, Mayer U, Götz M (2006) Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133:3245–3254

    Article  PubMed  CAS  Google Scholar 

  68. Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201

    Article  PubMed  CAS  Google Scholar 

  69. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  PubMed  CAS  Google Scholar 

  70. Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131:3133–3145

    Article  PubMed  CAS  Google Scholar 

  71. Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 21:23–35

    Article  PubMed  CAS  Google Scholar 

  72. Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146:18–36

    Article  PubMed  CAS  Google Scholar 

  73. Attardo A, Calegari F, Haubensak W, Wilsch-Brauninger M, Huttner WB (2008) Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One 3:e2388

    Article  PubMed  Google Scholar 

  74. Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251

    Article  PubMed  CAS  Google Scholar 

  75. Kawaguchi A, Ikawa T, Kasukawa T, Ueda HR, Kurimoto K, Saitou M, Matsuzaki F (2008) Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis. Development 135:3113–3124

    Article  PubMed  CAS  Google Scholar 

  76. Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53

    Article  PubMed  Google Scholar 

  77. Fish JL, Dehay C, Kennedy H, Huttner WB (2008) Making bigger brains-the evolution of neural-progenitor-cell division. J Cell Sci 121:2783–2793

    Article  PubMed  CAS  Google Scholar 

  78. Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R et al (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699

    Article  PubMed  CAS  Google Scholar 

  79. Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    Article  PubMed  CAS  Google Scholar 

  80. Wang X, Tsai JW, LaMonica B, Kriegstein AR (2011) A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 14:555–561

    Article  PubMed  CAS  Google Scholar 

  81. Thornton GK, Woods CG (2009) Primary microcephaly: do all roads lead to Rome? Trends Genet 25:501–510

    Article  PubMed  CAS  Google Scholar 

  82. Kaindl AM, Passemard S, Kumar P, Kraemer N, Issa L, Zwirner A, Gerard B, Verloes A, Mani S, Gressens P (2010) Many roads lead to primary autosomal recessive microcephaly. Prog Neurobiol 90:363–383

    Article  PubMed  CAS  Google Scholar 

  83. Latasa MJ, Cisneros E, Frade JM (2009) Cell cycle control of Notch signaling and the functional regionalization of the neuroepithelium during vertebrate neurogenesis. Int J Dev Biol 53:895–908

    Article  PubMed  CAS  Google Scholar 

  84. Mahmood S, Ahmad W, Hassan MJ (2011) Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 6:39

    Article  PubMed  Google Scholar 

  85. Barrera JA, Kao LR, Hammer RE, Seemann J, Fuchs JL, Megraw TL (2010) CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev Cell 18:913–926

    Article  PubMed  CAS  Google Scholar 

  86. Kraemer N, Issa L, Hauck SC, Mani S, Ninnemann O, Kaindl AM (2011) What’s the hype about CDK5RAP2? Cell Mol Life Sci 68:1719–1736

    Article  PubMed  CAS  Google Scholar 

  87. Barr AR, Kilmartin JV, Gergely F (2010) CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. J Cell Biol 189:23–39

    Article  PubMed  CAS  Google Scholar 

  88. Buchman JJ, Tseng HC, Zhou Y, Frank CL, Xie Z, Tsai LH (2010) Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66:386–402

    Article  PubMed  CAS  Google Scholar 

  89. Lizarraga SB, Margossian SP, Harris MH, Campagna DR, Han AP, Blevins S, Mudbhary R, Barker JE, Walsh CA, Fleming MD (2010) Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors. Development 137:1907–1917

    Article  PubMed  CAS  Google Scholar 

  90. Tang CJ, Lin SY, Hsu WB, Lin YN, Wu CT, Lin YC, Chang CW, Wu KS, Tang TK (2011) The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation. EMBO J 30:4790–4804

    Article  PubMed  CAS  Google Scholar 

  91. Kitagawa D, Kohlmaier G, Keller D, Strnad P, Balestra FR, Fluckiger I, Gonczy P (2011) Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL. J Cell Sci 124:3884–3893

    Article  PubMed  CAS  Google Scholar 

  92. Pierfelice T, Alberi L, Gaiano N (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69:840–855

    Article  PubMed  CAS  Google Scholar 

  93. Cisneros E, Latasa MJ, Garcia-Flores M, Frade JM (2008) Instability of Notch1 and Delta1 mRNAs and reduced Notch activity in vertebrate neuroepithelial cells undergoing S-phase. Mol Cel Neurosci 37:820–831

    Article  CAS  Google Scholar 

  94. Kawaguchi D, Yoshimatsu T, Hozumi K, Gotoh Y (2008) Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development 135:3849–3858

    Article  PubMed  CAS  Google Scholar 

  95. Hendrix RW, Zwaan J (1974) Cell shape regulation and cell cycle in embryonic lens cells. Nature 247:145–147

    Article  PubMed  CAS  Google Scholar 

  96. Messier PE (1978) Microtubules, interkinetic nuclear migration and neurulation. Experientia 34:289–296

    Article  PubMed  CAS  Google Scholar 

  97. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  PubMed  CAS  Google Scholar 

  98. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Drs. Akatsuki Kimura (Mishima), Takaki Miyata (Nagoya), and Caren Norden (Dresden) for their critical readings and helpful comments on the manuscript. I thank Dr. Kazunori Toida and the Electron Microscopy Research Center in Kawasaki Medical School for their technical support. Y. Kosodo was supported by research grants from the Japan Society for the Promotion of Science, Takeda Science Foundation, Novartis Foundation, Okayama Medical Foundation, and Kawasaki Medical School (23C-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Kosodo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosodo, Y. Interkinetic nuclear migration: beyond a hallmark of neurogenesis. Cell. Mol. Life Sci. 69, 2727–2738 (2012). https://doi.org/10.1007/s00018-012-0952-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0952-2

Keywords

Navigation