Skip to main content

Advertisement

Log in

Voices from within: gut microbes and the CNS

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Recent advances in research have greatly increased our understanding of the importance of the gut microbiota. Bacterial colonization of the intestine is critical to the normal development of many aspects of physiology such as the immune and endocrine systems. It is emerging that the influence of the gut microbiota also extends to modulation of host neural development. Furthermore, the overall balance in composition of the microbiota, together with the influence of pivotal species that induce specific responses, can modulate adult neural function, peripherally and centrally. Effects of commensal gut bacteria in adult animals include protection from the central effects of infection and inflammation as well as modulation of normal behavioral responses. There is now robust evidence that gut bacteria influence the enteric nervous system, an effect that may contribute to afferent signaling to the brain. The vagus nerve has also emerged as an important means of communicating signals from gut bacteria to the CNS. Further understanding of the mechanisms underlying microbiome–gut–brain communication will provide us with new insight into the symbiotic relationship between gut microbiota and their mammalian hosts and help us identify the potential for microbial-based therapeutic strategies to aid in the treatment of mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Drossman DA (1998) Presidential address: gastrointestinal illness and the biopsychosocial model. Psychosom Med 60:258–267

    PubMed  CAS  Google Scholar 

  2. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24:4–10

    Article  PubMed  CAS  Google Scholar 

  3. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    Article  PubMed  CAS  Google Scholar 

  4. Marchesi J, Shanahan F (2007) The normal intestinal microbiota. Curr Opin Infect Dis 20:508–513

    Article  PubMed  Google Scholar 

  5. O’Hara AM, Shanahan F (2007) Gut microbiota: mining for therapeutic potential. Clin Gastroenterol Hepatol 5:274–284

    Article  PubMed  CAS  Google Scholar 

  6. Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C et al (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159:1739–1745

    PubMed  CAS  Google Scholar 

  7. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N et al (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558:263–275

    Article  PubMed  CAS  Google Scholar 

  8. Forsythe P, Bienenstock J Immunomodulation by commensal and probiotic bacteria. Immunol Invest 39: 429–448

  9. Lomax AR, Calder PC (2009) Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. Curr Pharm Des 15:1428–1518

    Article  PubMed  CAS  Google Scholar 

  10. Dantzer R, Konsman JP, Bluthe RM, Kelley KW (2000) Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci 85:60–65

    Article  PubMed  CAS  Google Scholar 

  11. Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V et al (2000) Cytokine signals propagate through the brain. Mol Psychiatry 5:604–615

    Article  PubMed  CAS  Google Scholar 

  12. Fagundes CT, Amaral FA, Teixeira AL, Souza DG, Teixeira MM (2012) Adapting to environmental stresses: the role of the microbiota in controlling innate immunity and behavioral responses. Immunol Rev 245:250–264

    Article  PubMed  CAS  Google Scholar 

  13. Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J (2010) Mood and gut feelings. Brain Behav Immun 24:9–16

    Article  PubMed  Google Scholar 

  14. Dillon RJ, Vennard CT, Charnley AK (2000) Exploitation of gut bacteria in the locust. Nature 403:851

    Article  PubMed  CAS  Google Scholar 

  15. Dillon RJ, Vennard CT, Charnley AK (2002) A note: gut bacteria produce components of a locust cohesion pheromone. J Appl Microbiol 92:759–763

    Article  PubMed  CAS  Google Scholar 

  16. Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E (2011) Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome concept of evolution. Gut Microbes 2:190–192

    Article  PubMed  Google Scholar 

  17. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  PubMed  CAS  Google Scholar 

  18. Ferveur JF (1997) The pheromonal role of cuticular hydrocarbons in Drosophila melanogaster. BioEssays 19:353–358

    Article  PubMed  CAS  Google Scholar 

  19. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV (2004) Evolution of cell–cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet 20:292–299

    Article  PubMed  CAS  Google Scholar 

  20. Sobko T, Huang L, Midtvedt T, Norin E, Gustafsson LE et al (2006) Generation of NO by probiotic bacteria in the gastrointestinal tract. Free Radic Biol Med 41:985–991

    Article  PubMed  CAS  Google Scholar 

  21. Schicho R, Krueger D, Zeller F, Von Weyhern CW, Frieling T et al (2006) Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology 131:1542–1552

    Article  PubMed  CAS  Google Scholar 

  22. Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120

    Article  PubMed  CAS  Google Scholar 

  23. Boontham P, Robins A, Chandran P, Pritchard D, Camara M et al (2008) Significant immunomodulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: possible link in human sepsis. Clin Sci (Lond) 115:343–351

    Article  CAS  Google Scholar 

  24. Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P et al (1998) The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect Immun 66:36–42

    PubMed  CAS  Google Scholar 

  25. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103:10420–10425

    Article  PubMed  CAS  Google Scholar 

  26. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    PubMed  CAS  Google Scholar 

  27. Craig AD (2009) How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    Article  PubMed  CAS  Google Scholar 

  28. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13:500–505

    Article  PubMed  CAS  Google Scholar 

  29. Cabanac M (1971) Physiological role of pleasure. Science 173:1103–1107

    Article  PubMed  CAS  Google Scholar 

  30. Crucian GP, Hughes JD, Barrett AM, Williamson DJ, Bauer RM et al (2000) Emotional and physiological responses to false feedback. Cortex 36:623–647

    Article  PubMed  CAS  Google Scholar 

  31. Zagon A (2001) Does the vagus nerve mediate the sixth sense? Trends Neurosci 24:671–673

    Article  PubMed  CAS  Google Scholar 

  32. Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G et al (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45:1–14

    Article  PubMed  CAS  Google Scholar 

  33. Matsuda NM, Miller SM, Evora PR (2009) The chronic gastrointestinal manifestations of Chagas disease. Clinics (Sao Paulo) 64:1219–1224

    Article  Google Scholar 

  34. Sato A, Yamamoto M, Imamura K, Kashiki Y, Kunieda T et al (1978) Pathophysiology of aganglionic colon and anorectum: an experimental study on aganglionosis produced by a new method in the rat. J Pediatr Surg 13:399–435

    Article  PubMed  CAS  Google Scholar 

  35. Kunze WA, Bornstein JC, Furness JB (1995) Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal. Neuroscience 66:1–4

    Article  PubMed  CAS  Google Scholar 

  36. Kunze WA, Mao YK, Wang B, Huizinga JD, Ma X et al. (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium dependent potassium channel opening. J Cell Mol Med 13:2261–2270

    Google Scholar 

  37. Mao Y, Wang B, Kunze W (2006) Characterization of myenteric sensory neurons in the mouse small intestine. J Neurophysiol 96:998–1010

    Article  PubMed  Google Scholar 

  38. Kunze WA, Furness JB (1999) The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol 61:117–142

    Article  PubMed  CAS  Google Scholar 

  39. Howe DG, Clarke CM, Yan H, Willis BS, Schneider DA et al (2006) Inhibition of protein kinase A in murine enteric neurons causes lethal intestinal pseudo-obstruction. J Neurobiol 66:256–272

    Article  PubMed  CAS  Google Scholar 

  40. Keast JR, Furness JB, Costa M (1984) Somatostatin in human enteric nerves. Distribution and characterization. Cell Tissue Res 237:299–308

    Article  PubMed  CAS  Google Scholar 

  41. Ekblad E, Winther C, Ekman R, Hakanson R, Sundler F (1987) Projections of peptide-containing neurons in rat small intestine. Neuroscience 20:169–188

    Article  PubMed  CAS  Google Scholar 

  42. Furness JB (2006) The enteric nervous system. Blackwell, Oxford

    Google Scholar 

  43. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP et al (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656

    Article  PubMed  CAS  Google Scholar 

  44. Wang B, Mao YK, Diorio C, Pasyk M, Wu RY et al (2010) Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB J 24:4078–4088

    Article  PubMed  CAS  Google Scholar 

  45. Kamiya T, Wang L, Forsythe P, Goettsche G, Mao Y et al (2006) Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague–Dawley rats. Gut 55:191–196

    Article  PubMed  CAS  Google Scholar 

  46. Rousseaux C, Thuru X, Gelot A, Barnich N, Neut C et al (2007) Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 13:35–37

    Article  PubMed  CAS  Google Scholar 

  47. Verdu EF, Bercik P, Verma-Gandhu M, Huang XX, Blennerhassett P et al (2006) Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55:182–190

    Article  PubMed  CAS  Google Scholar 

  48. Phillips RJ, Walter GC, Powley TL (2010) Age-related changes in vagal afferents innervating the gastrointestinal tract. Auton Neurosci 153:90–98

    Article  PubMed  CAS  Google Scholar 

  49. Mazzia C, Clerc N (1997) Ultrastructural relationships of spinal primary afferent fibres with neuronal and non-neuronal cells in the myenteric plexus of the cat oesophago-gastric junction. Neuroscience 80:925–937

    Article  PubMed  CAS  Google Scholar 

  50. Takaki M, Nakayama S (1988) Effects of mesenteric nerve stimulation on the electrical activity of myenteric neurons in the guinea pig ileum. Brain Res 442:351–353

    Article  PubMed  CAS  Google Scholar 

  51. Mueller MH, Xue B, Glatzle J, Hahn J, Grundy D et al (2009) Extrinsic afferent nerve sensitivity and enteric neurotransmission in murine jejunum in vitro. Am J Physiol Gastrointest Liver Physiol 297:G655–G662

    Article  PubMed  CAS  Google Scholar 

  52. Sarna SK (2007) Enteric descending and afferent neural signaling stimulated by giant migrating contractions: essential contributing factors to visceral pain. Am J Physiol Gastrointest Liver Physiol 292:G572–G581

    Article  PubMed  CAS  Google Scholar 

  53. Grangette C, Nutten S, Palumbo E, Morath S, Hermann C et al (2005) Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci USA 102:10321–10326

    Article  PubMed  CAS  Google Scholar 

  54. Duncker SC, Wang L, Hols P, Bienenstock J (2008) The d-alanine content of lipoteichoic acid is crucial for Lactobacillus plantarum-mediated protection from visceral pain perception in a rat colorectal distension model. Neurogastroenterol Motil 20:843–850

    Article  PubMed  CAS  Google Scholar 

  55. Kamm K, Hoppe S, Breves G, Schroder B, Schemann M (2004) Effects of the probiotic yeast Saccharomyces boulardii on the neurochemistry of myenteric neurones in pig jejunum. Neurogastroenterol Motil 16:53–60

    Article  PubMed  CAS  Google Scholar 

  56. Nestler EJ (2005) The neurobiology of cocaine addiction. Sci Pract Perspect 3:4–10

    Article  PubMed  Google Scholar 

  57. Guagnini F, Cogliati P, Mukenge S, Ferla G, Croci T (2006) Tolerance to cannabinoid response on the myenteric plexus of Guinea-pig ileum and human small intestinal strips. Br J Pharmacol 148:1165–1173

    Article  PubMed  CAS  Google Scholar 

  58. Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052

    Article  CAS  Google Scholar 

  59. Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(255–64):e119

    Google Scholar 

  60. Lucas A (1991) Programming by early nutrition in man. Ciba Found Symp 156: 38–50 (discussion 50–5)

    Google Scholar 

  61. Cannistraro PA, Rauch SL (2003) Neural circuitry of anxiety: evidence from structural and functional neuroimaging studies. Psychopharmacol Bull 37:8–25

    PubMed  Google Scholar 

  62. Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834

    PubMed  CAS  Google Scholar 

  63. Deng YS, Zhong JH, Zhou XF (2000) Effects of endogenous neurotrophins on sympathetic sprouting in the dorsal root ganglia and allodynia following spinal nerve injury. Exp Neurol 164:344–350

    Article  PubMed  CAS  Google Scholar 

  64. Garraway SM, Petruska JC, Mendell LM (2003) BDNF sensitizes the response of lamina II neurons to high threshold primary afferent inputs. Eur J Neurosci 18:2467–2476

    Article  PubMed  Google Scholar 

  65. Nguyen N, Lee SB, Lee YS, Lee KH, Ahn JY (2009) Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem Res 34:942–951

    Article  PubMed  CAS  Google Scholar 

  66. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G et al (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148

    Article  PubMed  CAS  Google Scholar 

  67. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N et al (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    Article  PubMed  CAS  Google Scholar 

  68. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265

    Article  PubMed  CAS  Google Scholar 

  69. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R (2005) Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 136:29–37

    Article  PubMed  CAS  Google Scholar 

  70. Fuss J, Ben Abdallah NM, Hensley FW, Weber KJ, Hellweg R et al. (2010) Deletion of running-induced hippocampal neurogenesis by irradiation prevents development of an anxious phenotype in mice. PLoS One 5:e12769

    Google Scholar 

  71. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093

    Article  PubMed  CAS  Google Scholar 

  72. Yee BK, Zhu SW, Mohammed AH, Feldon J (2007) Levels of neurotrophic factors in the hippocampus and amygdala correlate with anxiety- and fear-related behaviour in C57BL6 mice. J Neural Transm 114:431–444

    Article  PubMed  CAS  Google Scholar 

  73. Bergami M, Rimondini R, Santi S, Blum R, Gotz M et al (2008) Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc Natl Acad Sci USA 105:15570–15575

    Article  PubMed  CAS  Google Scholar 

  74. Zuena AR, Mairesse J, Casolini P, Cinque C, Alema GS et al (2008) Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. PLoS ONE 3:e2170

    Article  PubMed  CAS  Google Scholar 

  75. Ren-Patterson RF, Cochran LW, Holmes A, Lesch KP, Lu B et al (2006) Gender-dependent modulation of brain monoamines and anxiety-like behaviors in mice with genetic serotonin transporter and BDNF deficiencies. Cell Mol Neurobiol 26:755–780

    Article  PubMed  CAS  Google Scholar 

  76. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317

    Article  PubMed  Google Scholar 

  77. Crowther JS, Drasar BS, Goddard P, Hill MJ, Johnson K (1973) The effect of a chemically defined diet on the faecal flora and faecal steroid concentration. Gut 14:790–793

    Article  PubMed  CAS  Google Scholar 

  78. Zentek J, Marquart B, Pietrzak T, Ballevre O, Rochat F (2003) Dietary effects on bifidobacteria and Clostridium perfringens in the canine intestinal tract. J Anim Physiol Anim Nutr (Berl) 87:397–407

    Article  CAS  Google Scholar 

  79. Li W, Dowd SE, Scurlock B, Acosta-Martinez V, Lyte M (2009) Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol Behav 96:557–567

    Article  PubMed  CAS  Google Scholar 

  80. Bercik P, Denou E, Collins J, Jackson W, Lu J et al. (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141: 599–609 (609.e1-3)

    Google Scholar 

  81. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055

    Article  PubMed  CAS  Google Scholar 

  82. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23:1132–1139

    Article  PubMed  CAS  Google Scholar 

  83. Bruzzese E, Volpicelli M, Squaglia M, Tartaglione A, Guarino A (2006) Impact of prebiotics on human health. Dig Liver Dis 38(Suppl 2):S283–S287

    Article  PubMed  Google Scholar 

  84. Groot J, Bijlsma P, Van Kalkeren A, Kiliaan A, Saunders P et al (2000) Stress-induced decrease of the intestinal barrier function. The role of muscarinic receptor activation. Ann NY Acad Sci 915:237–246

    Article  PubMed  CAS  Google Scholar 

  85. Saunders PR, Kosecka U, McKay DM, Perdue MH (1994) Acute stressors stimulate ion secretion and increase epithelial permeability in rat intestine. Am J Physiol 267:G794–G799

    PubMed  CAS  Google Scholar 

  86. Bercik P, Verdu EF, Foster JA, Macri J, Potter M et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139(2102–2112):e1

    PubMed  Google Scholar 

  87. Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N et al (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19:334–344

    Article  PubMed  Google Scholar 

  88. Tanida M, Yamano T, Maeda K, Okumura N, Fukushima Y et al (2005) Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci Lett 389:109–114

    Article  PubMed  CAS  Google Scholar 

  89. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF et al (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188

    Article  PubMed  CAS  Google Scholar 

  90. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  PubMed  CAS  Google Scholar 

  91. Gareau MG, Jury J, Macqueen G, Sherman PM, Perdue MH (2007) Probiotic treatment of rat pups normalizes corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56:1522–1528

    Google Scholar 

  92. Cryan JF, Slattery DA (2010) GABAB receptors and depression. Current status. Adv Pharmacol 58:427–451

    Article  PubMed  CAS  Google Scholar 

  93. Kesner RP, Hardy JD (1983) Long-term memory for contextual attributes: dissociation of amygdala and hippocampus. Behav Brain Res 8:139–149

    Article  PubMed  CAS  Google Scholar 

  94. Marschner A, Kalisch R, Vervliet B, Vansteenwegen D, Buchel C (2008) Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. J Neurosci 28:9030–9036

    Article  PubMed  CAS  Google Scholar 

  95. Jacobson LH, Bettler B, Kaupmann K, Cryan JF (2007) Behavioral evaluation of mice deficient in GABA(B(1)) receptor isoforms in tests of unconditioned anxiety. Psychopharmacology 190:541–553

    Article  PubMed  CAS  Google Scholar 

  96. Jacobson LH, Kelly PH, Bettler B, Kaupmann K, Cryan JF (2007) Specific roles of GABA(B(1)) receptor isoforms in cognition. Behav Brain Res 181:158–162

    Article  PubMed  CAS  Google Scholar 

  97. Browning KN, Mendelowitz D (2003) Musings on the wanderer: what’s new in our understanding of vago-vagal reflexes? II. Integration of afferent signaling from the viscera by the nodose ganglia. Am J Physiol Gastrointest Liver Physiol 284:G8–G14

    PubMed  CAS  Google Scholar 

  98. Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234:734–737

    Article  PubMed  CAS  Google Scholar 

  99. Aston-Jones G, Rajkowski J, Kubiak P, Valentino RJ, Shipley MT (1996) Role of the locus coeruleus in emotional activation. Prog Brain Res 107:379–402

    Article  PubMed  CAS  Google Scholar 

  100. Ziegler DR, Cass WA, Herman JP (1999) Excitatory influence of the locus coeruleus in hypothalamic–pituitary–adrenocortical axis responses to stress. J Neuroendocrinol 11:361–369

    Article  PubMed  CAS  Google Scholar 

  101. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160:1–12

    Article  PubMed  CAS  Google Scholar 

  102. Walsh SP, Kling MA (2004) VNS and depression: current status and future directions. Expert Rev Med Devices 1:155–160

    Article  PubMed  Google Scholar 

  103. Wang X, Wang BR, Zhang XJ, Xu Z, Ding YQ et al (2002) Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J Gastroenterol 8:540–545

    PubMed  Google Scholar 

  104. Cameron J, Doucet E (2007) Getting to the bottom of feeding behaviour: who’s on top? Appl Physiol Nutr Metab 32:177–189

    Article  PubMed  CAS  Google Scholar 

  105. Wren AM, Bloom SR (2007) Gut hormones and appetite control. Gastroenterology 132:2116–2130

    CAS  Google Scholar 

  106. Tortorella C, Neri G, Nussdorfer GG (2007) Galanin in the regulation of the hypothalamic-pituitary-adrenal axis (review). Int J Mol Med 19:639–647

    PubMed  CAS  Google Scholar 

  107. Wrenn CC, Holmes A (2006) The role of galanin in modulating stress-related neural pathways. Drug News Perspect 19:461–467

    Article  PubMed  CAS  Google Scholar 

  108. Rustay NR, Wrenn CC, Kinney JW, Holmes A, Bailey KR et al (2005) Galanin impairs performance on learning and memory tasks: findings from galanin transgenic and GAL-R1 knockout mice. Neuropeptides 39:239–243

    Article  PubMed  CAS  Google Scholar 

  109. Wrenn CC, Kinney JW, Marriott LK, Holmes A, Harris AP et al (2004) Learning and memory performance in mice lacking the GAL-R1 subtype of galanin receptor. Eur J Neurosci 19:1384–1396

    Article  PubMed  Google Scholar 

  110. Giordano R, Pellegrino M, Picu A, Bonelli L, Balbo M et al (2006) Neuroregulation of the hypothalamus–pituitary–adrenal (HPA) axis in humans: effects of GABA-, mineralocorticoid-, and GH-Secretagogue-receptor modulation. Sci World J 6:1–11

    Article  CAS  Google Scholar 

  111. Jaszberenyi M, Bujdoso E, Bagosi Z, Telegdy G (2006) Mediation of the behavioral, endocrine and thermoregulatory actions of ghrelin. Horm Behav 50:266–273

    Article  PubMed  CAS  Google Scholar 

  112. Carlini VP, Perez MF, Salde E, Schioth HB, Ramirez OA et al (2010) Ghrelin induced memory facilitation implicates nitric oxide synthase activation and decrease in the threshold to promote LTP in hippocampal dentate gyrus. Physiol Behav 101:117–123

    Article  PubMed  CAS  Google Scholar 

  113. Yamada K, Wada E, Wada K (2000) Male mice lacking the gastrin-releasing peptide receptor (GRP-R) display elevated preference for conspecific odors and increased social investigatory behaviors. Brain Res 870:20–26

    Article  PubMed  CAS  Google Scholar 

  114. Yamada K, Wada E, Wada K (2001) Female gastrin-releasing peptide receptor (GRP-R)-deficient mice exhibit altered social preference for male conspecifics: implications for GRP/GRP-R modulation of GABAergic function. Brain Res 894:281–287

    Article  PubMed  CAS  Google Scholar 

  115. Holsboer F (2003) The role of peptides in treatment of psychiatric disorders. J Neural Transm Suppl 17–34

  116. Berglund MM, Hipskind PA, Gehlert DR (2003) Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 228:217–244

    CAS  Google Scholar 

  117. Ishida H, Shirayama Y, Iwata M, Katayama S, Yamamoto A et al (2007) Infusion of neuropeptide Y into CA3 region of hippocampus produces antidepressant-like effect via Y1 receptor. Hippocampus 17:271–280

    Article  PubMed  CAS  Google Scholar 

  118. Lu XY, Kim CS, Frazer A, Zhang W (2006) Leptin: a potential novel antidepressant. Proc Natl Acad Sci USA 103:1593–1598

    Article  PubMed  CAS  Google Scholar 

  119. Hirano S, Miyata S, Kamei J (2007) Antidepressant-like effect of leptin in streptozotocin-induced diabetic mice. Pharmacol Biochem Behav 86:27–31

    Article  PubMed  CAS  Google Scholar 

  120. Uribe A, Alam M, Johansson O, Midtvedt T, Theodorsson E (1994) Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. Gastroenterology 107:1259–1269

    PubMed  CAS  Google Scholar 

  121. Hsiao WW, Metz C, Singh DP, Roth J (2008) The microbes of the intestine: an introduction to their metabolic and signaling capabilities. Endocrinol Metab Clin North Am 37:857–871

    Article  PubMed  CAS  Google Scholar 

  122. Moran-Ramos S, Tovar AR, Torres N (2012) Diet: friend or foe of enteroendocrine cells-how it interacts with enteroendocrine cells. Adv Nutr 3:8–20

    PubMed  CAS  Google Scholar 

  123. Di Giancamillo A, Vitari F, Savoini G, Bontempo V, Bersani C et al (2008) Effects of orally administered probiotic Pediococcus acidilactici on the small and large intestine of weaning piglets. A qualitative and quantitative micro-anatomical study. Histol Histopathol 23:651–664

    PubMed  Google Scholar 

  124. Lesniewska V, Rowland I, Cani PD, Neyrinck AM, Delzenne NM et al (2006) Effect on components of the intestinal microflora and plasma neuropeptide levels of feeding Lactobacillus delbrueckii, Bifidobacterium lactis, and inulin to adult and elderly rats. Appl Environ Microbiol 72:6533–6538

    Article  PubMed  CAS  Google Scholar 

  125. Fetissov SO, Hamze Sinno M, Coeffier M, Bole-Feysot C, Ducrotte P et al (2008) Autoantibodies against appetite-regulating peptide hormones and neuropeptides: putative modulation by gut microflora. Nutrition 24:348–359

    Article  PubMed  CAS  Google Scholar 

  126. Fetissov SO, Hamze Sinno M, Coquerel Q, Do Rego JC, Coeffier M et al (2008) Emerging role of autoantibodies against appetite-regulating neuropeptides in eating disorders. Nutrition 24:854–859

    Article  PubMed  CAS  Google Scholar 

  127. Fetissov SO, Hallman J, Oreland L, Af Klinteberg B, Grenback E et al (2002) Autoantibodies against alpha-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc Natl Acad Sci USA 99:17155–17160

    Article  PubMed  CAS  Google Scholar 

  128. Fetissov SO, Harro J, Jaanisk M, Jarv A, Podar I et al (2005) Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proc Natl Acad Sci USA 102:14865–14870

    Article  PubMed  CAS  Google Scholar 

  129. Kendler KS, Thornton LM, Gardner CO (2000) Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “kindling” hypothesis. Am J Psychiatry 157:1243–1251

    Article  PubMed  CAS  Google Scholar 

  130. Leonard BE (2005) The HPA and immune axes in stress: the involvement of the serotonergic system. Eur Psychiatry 20(Suppl 3):S302–S306

    Article  PubMed  Google Scholar 

  131. Wang B, Mao YK, Diorio C, Wang L, Huizinga JD et al (2010) Lactobacillus reuteri ingestion and IK(Ca) channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol Motil 22(98–107):e33

    Google Scholar 

  132. Tehrani AB, Nezami BG, Gewirtz A, Srinivasan S (2012) Obesity and its associated disease: a role for microbiota? Neurogastroenterol Motil 24:305–311

    Google Scholar 

  133. Bufford JD, Gern JE (2005) The hygiene hypothesis revisited. Immunol Allergy Clin North Am 25: 247–62

    Google Scholar 

  134. Noverr MC, Huffnagle GB (2005) The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy 35:1511–1520

    Article  PubMed  CAS  Google Scholar 

  135. Logan AC, Katzman M (2005) Major depressive disorder: probiotics may be an adjuvant therapy. Med Hypotheses 64:533–538

    Article  PubMed  Google Scholar 

  136. Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C et al (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1:6

    Article  PubMed  Google Scholar 

  137. Sullivan A, Nord CE, Evengard B (2009) Effect of supplement with lactic-acid producing bacteria on fatigue and physical activity in patients with chronic fatigue syndrome. Nutr J 8:4

    Article  PubMed  CAS  Google Scholar 

  138. Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H et al (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2:256–261

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Forsythe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsythe, P., Kunze, W.A. Voices from within: gut microbes and the CNS. Cell. Mol. Life Sci. 70, 55–69 (2013). https://doi.org/10.1007/s00018-012-1028-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1028-z

Keywords

Navigation