Skip to main content
Log in

An outline of desensitization in pentameric ligand-gated ion channel receptors

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Pentameric ligand-gated ion channel (pLGIC) receptors exhibit desensitization, the progressive reduction in ionic flux in the prolonged presence of agonist. Despite its pathophysiological importance and the fact that it was first described over half a century ago, surprisingly little is known about the structural basis of desensitization in this receptor family. Here, we explain how desensitization is defined using functional criteria. We then review recent progress into reconciling the structural and functional basis of this phenomenon. The extracellular–transmembrane domain interface is a key locus. Activation is well known to involve conformational changes at this interface, and several lines of evidence suggest that desensitization involves a distinct conformational change here that is incompatible with activation. However, major questions remain unresolved, including the structural basis of the desensitization-induced agonist affinity increase and the mechanism of pore closure during desensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Del Castillo J, Katz B (1957) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Lond B 146:369–381

    Article  Google Scholar 

  2. Katz B, Thesleff S (1957) A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol 138:63–80

    PubMed  CAS  Google Scholar 

  3. Moffatt L, Hume RI (2007) Responses of rat P2X2 receptors to ultrashort pulses of ATP provide insights into ATP binding and channel gating. J Gen Physiol 130:183–201

    Article  PubMed  CAS  Google Scholar 

  4. Silberberg SD et al (2007) Ivermectin Interaction with transmembrane helices reveals widespread rearrangements during opening of P2X receptor channels. Neuron 54:263–274

    Article  PubMed  CAS  Google Scholar 

  5. Wyllie DJ et al (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J Physiol 510(Pt 1):1–18

    Article  PubMed  CAS  Google Scholar 

  6. Jones MV, Westbrook GL (1996) The impact of receptor desensitization on fast synaptic transmission. Trends Neurosci 19:96–101

    Article  PubMed  CAS  Google Scholar 

  7. Mansvelder HD et al (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919

    Article  PubMed  CAS  Google Scholar 

  8. Bertrand D et al (2002) How mutations in the nAChRs can cause ADNFLE epilepsy. Epilepsia 43(Suppl 5):112–122

    Article  PubMed  CAS  Google Scholar 

  9. Sine SM et al (2002) Naturally occurring mutations at the acetylcholine receptor binding site independently alter ACh binding and channel gating. J Gen Physiol 120:483–496

    Article  PubMed  CAS  Google Scholar 

  10. Saul B et al (1999) Novel GLRA1 missense mutation (P250T) in dominant hyperekplexia defines an intracellular determinant of glycine receptor channel gating. J Neurosci 19:869–877

    PubMed  CAS  Google Scholar 

  11. Bowser DN et al (2002) Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation [gamma 2(R43Q)] found in human epilepsy. Proc Natl Acad Sci USA 99:15170–15175

    Article  PubMed  CAS  Google Scholar 

  12. Bocquet N et al (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–114

    Article  PubMed  CAS  Google Scholar 

  13. Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60

    Article  PubMed  CAS  Google Scholar 

  14. Hilf RJ, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452:375–379

    Article  PubMed  CAS  Google Scholar 

  15. Hilf RJ, Dutzler R (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457:115–118

    Article  PubMed  CAS  Google Scholar 

  16. Auerbach A (2010) The gating isomerization of neuromuscular acetylcholine receptors. J Physiol 588:573–586

    Article  PubMed  CAS  Google Scholar 

  17. Giniatullin R et al (2005) Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends Neurosci 28:371–378

    Article  PubMed  CAS  Google Scholar 

  18. Tasneem A et al (2005) Identification of the prokaryotic ligand-gated ion channels and their implications for the mechanisms and origins of animal Cys-loop ion channels. Genome Biol 6:R4

    Article  PubMed  Google Scholar 

  19. Wilson G, Karlin A (2001) Acetylcholine receptor channel structure in the resting, open, and desensitized states probed with the substituted-cysteine-accessibility method. Proc Natl Acad Sci USA 98:1241–1248

    Article  PubMed  CAS  Google Scholar 

  20. Miyazawa A et al (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  PubMed  CAS  Google Scholar 

  21. Jansen M et al (2008) Modular design of Cys-loop ligand-gated ion channels: functional 5-HT3 and GABA rho1 receptors lacking the large cytoplasmic M3M4 loop. J Gen Physiol 131:137–146

    Article  PubMed  CAS  Google Scholar 

  22. Goyal R et al (2011) Engineering a prokaryotic Cys-loop receptor with a third functional domain. J Biol Chem 286:34635–34642

    Article  PubMed  CAS  Google Scholar 

  23. Yang W et al (1995) Cloning and characterization of the human GABAA receptor alpha 4 subunit: identification of a unique diazepam-insensitive binding site. Eur J Pharmacol 291:319–325

    Article  PubMed  CAS  Google Scholar 

  24. Purohit P, Auerbach A (2010) Energetics of gating at the apo-acetylcholine receptor transmitter binding site. J Gen Physiol 135:321–331

    Article  PubMed  CAS  Google Scholar 

  25. Purohit P et al (2007) A stepwise mechanism for acetylcholine receptor channel gating. Nature 446:930–933

    Article  PubMed  CAS  Google Scholar 

  26. Grosman C et al (2000) Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403:773–776

    Article  PubMed  CAS  Google Scholar 

  27. Miller PS, Smart TG (2010) Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol Sci 31:161–174

    Article  PubMed  CAS  Google Scholar 

  28. Xiu X et al (2005) A unified view of the role of electrostatic interactions in modulating the gating of Cys loop receptors. J Biol Chem 280:41655–41666

    Article  PubMed  CAS  Google Scholar 

  29. Lynch JW et al (1997) Identification of intracellular and extracellular domains mediating signal transduction in the inhibitory glycine receptor chloride channel. EMBO J 16:110–120

    Article  PubMed  CAS  Google Scholar 

  30. Wang Q, Lynch JW (2011) Activation and desensitization induce distinct conformational changes at the extracellular-transmembrane domain interface of the glycine receptor. J Biol Chem 286:38814–38824

    Article  PubMed  CAS  Google Scholar 

  31. Hu XQ et al (2006) An interaction involving an arginine residue in the cytoplasmic domain of the 5-HT3A receptor contributes to receptor desensitization mechanism. J Biol Chem 281:21781–21788

    Article  PubMed  CAS  Google Scholar 

  32. O’Toole KK, Jenkins A (2011) Discrete M3–M4 intracellular loop subdomains control specific aspects of gamma-aminobutyric acid type A receptor function. J Biol Chem 286:37990–37999

    Article  PubMed  CAS  Google Scholar 

  33. Shen XM et al (2005) Subunit-specific contribution to agonist binding and channel gating revealed by inherited mutation in muscle acetylcholine receptor M3–M4 linker. Brain 128:345–355

    Article  PubMed  Google Scholar 

  34. Colquhoun DH, Hawkes AG (1995) The principles of the stochastic interpretation of ion-channel mechanisms. In: Single-channel recordings. Plenum, New York

  35. Jones MV, Westbrook GL (1995) Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15:181–191

    Article  PubMed  CAS  Google Scholar 

  36. Bouzat C et al (2008) The interface between extracellular and transmembrane domains of homomeric Cys-loop receptors governs open-channel lifetime and rate of desensitization. J Neurosci 28:7808–7819

    Article  PubMed  CAS  Google Scholar 

  37. Elenes S et al (2006) Desensitization contributes to the synaptic response of gain-of-function mutants of the muscle nicotinic receptor. J Gen Physiol 128:615–627

    Article  PubMed  CAS  Google Scholar 

  38. Solt K et al (2007) Differential effects of serotonin and dopamine on human 5-HT3A receptor kinetics: interpretation within an allosteric kinetic model. J Neurosci 27:13151–13160

    Article  PubMed  CAS  Google Scholar 

  39. Amin J, Weiss DS (1994) Homomeric rho 1 GABA channels: activation properties and domains. Recept Channels 2:227–236

    PubMed  CAS  Google Scholar 

  40. Yang J et al (2006) Kinetic properties of GABA rho1 homomeric receptors expressed in HEK293 cells. Biophys J 91:2155–2162

    Article  PubMed  CAS  Google Scholar 

  41. Lewis TM et al (2003) Kinetic determinants of agonist action at the recombinant human glycine receptor. J Physiol 549:361–374

    Article  PubMed  CAS  Google Scholar 

  42. Auerbach A, Akk G (1998) Desensitization of mouse nicotinic acetylcholine receptor channels: a two-gate mechanism. J Gen Physiol 112:181–197

    Article  PubMed  CAS  Google Scholar 

  43. Burzomato V et al (2004) Single-channel behavior of heteromeric alpha1beta glycine receptors: an attempt to detect a conformational change before the channel opens. J Neurosci 24:10924–10940

    Article  PubMed  CAS  Google Scholar 

  44. Krashia P et al (2011) The long activations of alpha2 glycine channels can be described by a mechanism with reaction intermediates (“flip”). J Gen Physiol 137:197–216

    Article  PubMed  CAS  Google Scholar 

  45. Elenes S, Auerbach A (2002) Desensitization of diliganded mouse muscle nicotinic acetylcholine receptor channels. J Physiol 541:367–383

    Article  PubMed  CAS  Google Scholar 

  46. Edmonds B et al (1995) Mechanisms of activation of muscle nicotinic acetylcholine receptors and the time course of endplate currents. Annu Rev Physiol 57:469–493

    Article  PubMed  CAS  Google Scholar 

  47. Sakmann B et al (1980) Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286:71–73

    Article  PubMed  CAS  Google Scholar 

  48. Colquhoun D, Hawkes AG, Mersushkin A, Edmonds B (1997) Properties of single ion channel currents elicitied by a pulse of agonist concentration or voltage. Philos Trans R Soc Lond A 355:1743–1786

    Article  Google Scholar 

  49. O’Toole KK, Jenkins A (2012) The apparent voltage dependence of GABAA receptor activation and modulation is inversely related to channel open probability. Mol Pharmacol 81:189–197

    Article  PubMed  CAS  Google Scholar 

  50. Milescu LS et al (2005) Maximum likelihood estimation of ion channel kinetics from macroscopic currents. Biophys J 88:2494–2515

    Article  PubMed  CAS  Google Scholar 

  51. Shelley C, Magleby KL (2008) Linking exponential components to kinetic states in Markov models for single-channel gating. J Gen Physiol 132:295–312

    Article  PubMed  Google Scholar 

  52. Keramidas A, Harrison NL (2010) The activation mechanism of alpha1beta2gamma2S and alpha3beta3gamma2S GABAA receptors. J Gen Physiol 135:59–75

    Article  PubMed  CAS  Google Scholar 

  53. Lape R et al (2008) On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454:722–727

    PubMed  CAS  Google Scholar 

  54. Chang Y et al (2002) Desensitization mechanism of GABA receptors revealed by single oocyte binding and receptor function. J Neurosci 22:7982–7990

    PubMed  CAS  Google Scholar 

  55. Kienker P (1989) Equivalence of aggregated Markov models of ion-channel gating. Proc R Soc Lond B 236:269–309

    Article  PubMed  CAS  Google Scholar 

  56. Zhou Y et al (2005) Phi-value analysis of a linear, sequential reaction mechanism: theory and application to ion channel gating. Biophys J 89:3680–3685

    Article  PubMed  CAS  Google Scholar 

  57. Auerbach A (2007) How to turn the reaction coordinate into time. J Gen Physiol 130:543–546

    Article  PubMed  CAS  Google Scholar 

  58. Lape R et al (2012) The alpha1K276E Startle disease mutation reveals multiple intermediate states in the gating of glycine receptors. J Neurosci 32:1336–1352

    Article  PubMed  CAS  Google Scholar 

  59. Purohit P, Auerbach A (2009) Unliganded gating of acetylcholine receptor channels. Proc Natl Acad Sci USA 106:115–120

    Article  PubMed  CAS  Google Scholar 

  60. Unwin N et al (1988) Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J Cell Biol 107:1123–1138

    Article  PubMed  CAS  Google Scholar 

  61. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346:967–989

    Article  PubMed  CAS  Google Scholar 

  62. Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    Article  PubMed  CAS  Google Scholar 

  63. Purohit Y, Grosman C (2006) Block of muscle nicotinic receptors by choline suggests that the activation and desensitization gates act as distinct molecular entities. J gen physiol 127:703–717

    Article  PubMed  CAS  Google Scholar 

  64. Othman NA et al (2012) Influences on blockade by t-butylbicyclo-phosphoro-thionate of GABA(A) receptor spontaneous gating, agonist activation and desensitization. J Physiol 590:163–178

    PubMed  CAS  Google Scholar 

  65. Pless SA, Lynch JW (2008) Illuminating the structure and function of Cys-loop receptors. Clin Exp Pharmacol Physiol 35:1137–1142

    Article  PubMed  CAS  Google Scholar 

  66. Akk G et al (2011) Pharmacology of structural changes at the GABA(A) receptor transmitter binding site. Br J Pharmacol 162:840–850

    Article  PubMed  CAS  Google Scholar 

  67. Muroi Y et al (2006) Local and global ligand-induced changes in the structure of the GABA(A) receptor. Biochemistry 45:7013–7022

    Article  PubMed  CAS  Google Scholar 

  68. Dahan DS et al (2004) A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site. Proc Natl Acad Sci USA 101:10195–10200

    Article  PubMed  CAS  Google Scholar 

  69. Grosman C, Auerbach A (2001) The dissociation of acetylcholine from open nicotinic receptor channels. Proc Natl Acad Sci USA 98:14102–14107

    Article  PubMed  CAS  Google Scholar 

  70. Sine SM et al (1995) Mutation of the acetylcholine receptor alpha subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity. Neuron 15:229–239

    Article  PubMed  CAS  Google Scholar 

  71. Wang J et al (2012) Potential state-selective hydrogen bond formation can modulate the activation and desensitization of the alpha7 nicotinic acetylcholine receptor. J Biol Chem 287(26):21957–21969

    Article  PubMed  CAS  Google Scholar 

  72. Zhang J et al (2011) Desensitization of alpha7 nicotinic receptor is governed by coupling strength relative to gate tightness. J Biol Chem 286:25331–25340

    Article  PubMed  CAS  Google Scholar 

  73. Revah F et al (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849

    Article  PubMed  CAS  Google Scholar 

  74. Matsushima N et al (2002) Mutation (Ser284Leu) of neuronal nicotinic acetylcholine receptor alpha 4 subunit associated with frontal lobe epilepsy causes faster desensitization of the rat receptor expressed in oocytes. Epilepsy Res 48:181–186

    Article  PubMed  CAS  Google Scholar 

  75. Gunthorpe MJ et al (2000) The 4′lysine in the putative channel lining domain affects desensitization but not the single-channel conductance of recombinant homomeric 5-HT3A receptors. J Physiol 522(Pt 2):187–198

    Article  PubMed  CAS  Google Scholar 

  76. Martinez-Torres A, Miledi R (2004) A single amino acid change within the ion-channel domain of the gamma-aminobutyric acid rho1 receptor accelerates desensitization and increases taurine agonism. Arch Med Res 35:194–198

    Article  PubMed  CAS  Google Scholar 

  77. Hu XQ, Lovinger DM (2005) Role of aspartate 298 in mouse 5-HT3A receptor gating and modulation by extracellular Ca2+. J Physiol 568:381–396

    Article  PubMed  CAS  Google Scholar 

  78. Castaldo P et al (2004) A novel hyperekplexia-causing mutation in the pre-transmembrane segment 1 of the human glycine receptor alpha1 subunit reduces membrane expression and impairs gating by agonists. J Biol Chem 279:25598–25604

    Article  PubMed  CAS  Google Scholar 

  79. Bianchi MT et al (2001) Structural determinants of fast desensitization and desensitization-deactivation coupling in GABAa receptors. J Neurosci 21:1127–1136

    PubMed  CAS  Google Scholar 

  80. Engblom AC et al (2002) Point mutation in the first transmembrane region of the beta 2 subunit of the gamma–aminobutyric acid type A receptor alters desensitization kinetics of gamma–aminobutyric acid- and anesthetic-induced channel gating. J Biol Chem 277:17438–17447

    Article  PubMed  CAS  Google Scholar 

  81. Lobitz N et al (2001) A single amino-acid in the TM1 domain is an important determinant of the desensitization kinetics of recombinant human and guinea pig alpha-homomeric 5-hydroxytryptamine type 3 receptors. Mol Pharmacol 59:844–851

    PubMed  CAS  Google Scholar 

  82. Breitinger HG et al (2004) Molecular dynamics simulation links conformation of a pore-flanking region to hyperekplexia-related dysfunction of the inhibitory glycine receptor. Chem Biol 11:1339–1350

    Article  PubMed  CAS  Google Scholar 

  83. Breitinger HG et al (2002) Hydroxylated residues influence desensitization behaviour of recombinant alpha3 glycine receptor channels. J Neurochem 83:30–36

    Article  PubMed  CAS  Google Scholar 

  84. McKinnon NK et al (2012) Length and amino acid sequence of peptides substituted for the 5-HT3A receptor M3M4 loop may affect channel expression and desensitization. PLoS One 7:e35563

    Article  PubMed  CAS  Google Scholar 

  85. Gonzalez-Gutierrez G, Grosman C (2010) Bridging the gap between structural models of nicotinic receptor superfamily ion channels and their corresponding functional states. J Mol Biol 403:693–705

    Article  PubMed  CAS  Google Scholar 

  86. Pan J et al (2012) Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine. Nat Commun 3:714

    Article  PubMed  CAS  Google Scholar 

  87. Gonzalez-Gutierrez G et al (2012) Mutations that stabilize the open state of the Erwinia chrisanthemi ligand-gated ion channel fail to change the conformation of the pore domain in crystals. Proc Natl Acad Sci USA 109:6331–6336

    Article  PubMed  CAS  Google Scholar 

  88. Nury H et al (2011) X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469:428–431

    Article  PubMed  CAS  Google Scholar 

  89. Parikh RB et al (2011) Structure of the M2 transmembrane segment of GLIC, a prokaryotic Cys loop receptor homologue from Gloeobacter violaceus, probed by substituted cysteine accessibility. J Biol Chem 286:14098–14109

    Article  PubMed  CAS  Google Scholar 

  90. Zimmermann I, Dutzler R (2011) Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC. PLoS Biol 9:e1001101

    Article  PubMed  CAS  Google Scholar 

  91. Beato M et al (2002) Openings of the rat recombinant alpha 1 homomeric glycine receptor as a function of the number of agonist molecules bound. J Gen Physiol 119:443–466

    Article  PubMed  CAS  Google Scholar 

  92. Beato M et al (2004) The activation mechanism of alpha1 homomeric glycine receptors. J Neurosci 24:895–906

    Article  PubMed  CAS  Google Scholar 

  93. Lema GM, Auerbach A (2006) Modes and models of GABA(A) receptor gating. J Physiol 572:183–200

    PubMed  CAS  Google Scholar 

  94. Haas KF, Macdonald RL (1999) GABAA receptor subunit gamma2 and delta subtypes confer unique kinetic properties on recombinant GABAA receptor currents in mouse fibroblasts. J Physiol 514(Pt 1):27–45

    Article  PubMed  CAS  Google Scholar 

  95. Jahn K et al (2001) Deactivation and desensitization of mouse embryonic- and adult-type nicotinic receptor channel currents. Neurosci Lett 307:89–92

    Article  PubMed  CAS  Google Scholar 

  96. Maconochie DJ, Steinbach JH (1998) The channel opening rate of adult- and fetal-type mouse muscle nicotinic receptors activated by acetylcholine. J Physiol 506(Pt 1):53–72

    Article  PubMed  CAS  Google Scholar 

  97. Fucile S et al (2002) The single-channel properties of human acetylcholine alpha 7 receptors are altered by fusing alpha 7 to the green fluorescent protein. Proc Natl Acad Sci USA 99:3956–3961

    Article  PubMed  CAS  Google Scholar 

  98. Grewer C (1999) Investigation of the alpha(1)-glycine receptor channel-opening kinetics in the submillisecond time domain. Biophys J 77:727–738

    Article  PubMed  CAS  Google Scholar 

  99. Mohammadi B et al (2003) Kinetic analysis of recombinant mammalian alpha(1) and alpha(1)beta glycine receptor channels. Eur Biophys J 32:529–536

    Article  PubMed  CAS  Google Scholar 

  100. Keramidas A et al (2006) The pre-M1 segment of the alpha1 subunit is a transduction element in the activation of the GABAA receptor. J Physiol 575:11–22

    Article  PubMed  CAS  Google Scholar 

  101. Maconochie DJ et al (1994) How quickly can GABAA receptors open? Neuron 12:61–71

    Article  PubMed  CAS  Google Scholar 

  102. Burkat PM et al (2001) Dominant gating governing transient GABA(A) receptor activity: a first latency and Po/o analysis. J Neurosci 21:7026–7036

    PubMed  CAS  Google Scholar 

  103. Scheller M, Forman SA (2002) Coupled and uncoupled gating and desensitization effects by pore domain mutations in GABA(A) receptors. J Neurosci 22:8411–8421

    PubMed  CAS  Google Scholar 

  104. Boileau AJ et al (2003) Effects of gamma2S subunit incorporation on GABAA receptor macroscopic kinetics. Neuropharmacology 44:1003–1012

    Article  PubMed  CAS  Google Scholar 

  105. Bianchi MT, Macdonald RL (2002) Slow phases of GABA(A) receptor desensitization: structural determinants and possible relevance for synaptic function. J Physiol 544:3–18

    Article  PubMed  CAS  Google Scholar 

  106. Krampfl K et al (2005) Molecular analysis of the A322D mutation in the GABA receptor alpha-subunit causing juvenile myoclonic epilepsy. Eur J Neurosci 22:10–20

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory is funded by the Australian Research Council and the National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Lynch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keramidas, A., Lynch, J.W. An outline of desensitization in pentameric ligand-gated ion channel receptors. Cell. Mol. Life Sci. 70, 1241–1253 (2013). https://doi.org/10.1007/s00018-012-1133-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1133-z

Keywords

Navigation