Skip to main content

Advertisement

Log in

Biomarkers for predicting future metastasis of human gastrointestinal tumors

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The recent advances in surgery and radiation therapy have significantly improved the prognosis of patients with primary cancer, and the major challenge of cancer treatment now is metastatic disease development. The 5-year survival rate of cancer patients who have distant metastasis at diagnosis is extremely low, suggesting that prediction and early detection of metastasis would definitely improve their prognosis because suitable patient therapeutic management and treatment strategy can be provided. Cancer cells from a primary site give rise to a metastatic tumor via a number of steps which require the involvement and altered expression of many regulators. These regulators may serve as biomarkers for predicting metastasis. Over the past few years, numerous regulators have been found correlating with metastasis. In this review, we summarize the findings of a number of potential biomarkers that are involved in cadherin–catenin interaction, integrin signaling, PI3K/Akt/mTOR signaling and cancer stem cell identification in gastrointestinal cancers. We will also discuss how certain biomarkers are associated with the tumor microenvironment that favors cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904

    Article  PubMed  CAS  Google Scholar 

  2. Yang SY et al (2011) Growth factors and their receptors in cancer metastases. Front Biosci 16:531–538

    Article  CAS  Google Scholar 

  3. Locker GY et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24(33):5313–5327

    Article  PubMed  CAS  Google Scholar 

  4. Ishihara S et al (2010) Prognostic significance of response to preoperative radiotherapy, lymph node metastasis, and CEA level in patients undergoing total mesorectal excision of rectal cancer. Int J Colorectal Dis 25(12):1417–1425

    Article  PubMed  Google Scholar 

  5. Fletcher RH (1986) Carcinoembryonic antigen. Ann Intern Med 104(1):66–73

    Article  PubMed  CAS  Google Scholar 

  6. Begent RH (1984) The value of carcinoembryonic antigen measurement in clinical practice. Ann Clin Biochem 21(Pt 4):231–238

    PubMed  Google Scholar 

  7. Thomas P et al (1990) The structure, metabolism and function of the carcinoembryonic antigen gene family. Biochim Biophys Acta 1032(2–3):177–189

    PubMed  CAS  Google Scholar 

  8. Sorbye H, Dahl O (2003) Carcinoembryonic antigen surge in metastatic colorectal cancer patients responding to oxaliplatin combination chemotherapy: implications for tumor marker monitoring and guidelines. J Clin Oncol 21(23):4466–4467

    Article  PubMed  Google Scholar 

  9. Sorbye H, Dahl O (2004) Transient CEA increase at start of oxaliplatin combination therapy for metastatic colorectal cancer. Acta Oncol 43(5):495–498

    Article  PubMed  CAS  Google Scholar 

  10. Sato H et al (2010) Significance of serum concentrations of E-selectin and CA19-9 in the prognosis of colorectal cancer. Jpn J Clin Oncol 40(11):1073–1080

    Article  PubMed  Google Scholar 

  11. Kim DH et al (2011) The relationships between perioperative CEA, CA 19–9, and CA 72–4 and recurrence in gastric cancer patients after curative radical gastrectomy. J Surg Oncol 104(6):585–591

    Article  PubMed  Google Scholar 

  12. Yakabe T et al (2010) Clinical significance of CEA and CA19-9 in postoperative follow-up of colorectal cancer. Ann Surg Oncol 17(9):2349–2356

    Article  PubMed  Google Scholar 

  13. Sanyal AJ, Yoon SK, Lencioni R (2010) The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist 15(Suppl 4):14–22

    Article  PubMed  Google Scholar 

  14. Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Hepatology 42(5):1208–1236

    Article  PubMed  Google Scholar 

  15. Di Bisceglie AM (2004) Issues in screening and surveillance for hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S104–S107

    Article  PubMed  Google Scholar 

  16. Daniele B et al (2004) Alpha-fetoprotein and ultrasonography screening for hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S108–S112

    Article  PubMed  Google Scholar 

  17. Ucar E et al (2008) Prognostic value of preoperative CEA, CA 19–9, CA 72–4, and AFP levels in gastric cancer. Adv Ther 25(10):1075–1084

    Article  PubMed  Google Scholar 

  18. Nakajima K et al (1998) Impact of preoperative serum carcinoembryonic antigen, CA 19–9 and alpha fetoprotein levels in gastric cancer patients. Tumour Biol 19(6):464–469

    Article  PubMed  CAS  Google Scholar 

  19. Steeg PS (2003) Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 3(1):55–63

    Article  PubMed  CAS  Google Scholar 

  20. Birchmeier W, Behrens J (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198(1):11–26

    PubMed  CAS  Google Scholar 

  21. Zhang CH et al (2010) Activation of STAT3 signal pathway correlates with twist and E-cadherin expression in hepatocellular carcinoma and their clinical significance. J Surg Res 174(1):120–129

    Article  PubMed  CAS  Google Scholar 

  22. Boo YJ et al (2007) L1 expression as a marker for poor prognosis, tumor progression, and short survival in patients with colorectal cancer. Ann Surg Oncol 14(5):1703–1711

    Article  PubMed  Google Scholar 

  23. Saad AA et al (2010) Prognostic significance of E-cadherin expression and peripheral blood micrometastasis in gastric carcinoma patients. Ann Surg Oncol 17(11):3059–3067

    Article  PubMed  Google Scholar 

  24. Uchikado Y et al (2011) Increased slug and decreased E-cadherin expression is related to poor prognosis in patients with gastric cancer. Gastric Cancer 14(1):41–49

    Article  PubMed  CAS  Google Scholar 

  25. Castro Alves C et al (2007) Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the down-regulation of E-cadherin. J Pathol 211(5):507–515

    Article  PubMed  CAS  Google Scholar 

  26. Joo YE et al (2002) Expression of E-cadherin, alpha- and beta-catenins in patients with pancreatic adenocarcinoma. Pancreatology 2(2):129–137

    Article  PubMed  CAS  Google Scholar 

  27. Zhao XJ et al (2003) Expression of e-cadherin and beta-catenin in human esophageal squamous cell carcinoma: relationships with prognosis. World J Gastroenterol 9(2):225–232

    PubMed  CAS  Google Scholar 

  28. Chan AO et al (2005) Early prediction of tumor recurrence after curative resection of gastric carcinoma by measuring soluble E-cadherin. Cancer 104(4):740–746

    Article  PubMed  CAS  Google Scholar 

  29. Chan AO et al (2001) Soluble E-cadherin is a valid prognostic marker in gastric carcinoma. Gut 48(6):808–811

    Article  PubMed  CAS  Google Scholar 

  30. Soyama A et al (2008) Significance of the serum level of soluble E-cadherin in patients with HCC. Hepatogastroenterology 55(85):1390–1393

    PubMed  Google Scholar 

  31. Okugawa Y et al (2011) Clinical significance of serum soluble E-cadherin in colorectal carcinoma. J Surg Res 175(2):e67–e73

    Google Scholar 

  32. Chung Y et al (2011) Serum soluble E-cadherin is a potential prognostic marker in esophageal squamous cell carcinoma. Dis Esophagus 24(1):49–55

    Article  PubMed  CAS  Google Scholar 

  33. Weiss JV et al (2011) Soluble E-cadherin as a serum biomarker candidate: elevated levels in patients with late-stage colorectal carcinoma and FAP. Int J Cancer 128(6):1384–1392

    Article  PubMed  CAS  Google Scholar 

  34. Pedrazzani C et al (2008) Influence of age on soluble E-cadherin serum levels prevents its utility as a disease marker in gastric cancer patients. Scand J Gastroenterol 43(6):765–766

    Article  PubMed  CAS  Google Scholar 

  35. Batlle E et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84–89

    Article  PubMed  CAS  Google Scholar 

  36. Cano A et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76–83

    Article  PubMed  CAS  Google Scholar 

  37. Zhang K et al (2011) Slug enhances invasion ability of pancreatic cancer cells through upregulation of matrix metalloproteinase-9 and actin cytoskeleton remodeling. Lab Invest 91(3):426–438

    Article  PubMed  CAS  Google Scholar 

  38. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142

    Article  PubMed  CAS  Google Scholar 

  39. Min AL et al (2009) High expression of snail mRNA in blood from hepatocellular carcinoma patients with extra-hepatic metastasis. Clin Exp Metastasis 26(7):759–767

    Article  PubMed  CAS  Google Scholar 

  40. Otsuki S et al (2011) Vimentin expression is associated with decreased survival in gastric cancer. Oncol Rep 25(5):1235–1242

    PubMed  Google Scholar 

  41. Hu L et al (2004) Association of vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene 23(1):298–302

    PubMed  CAS  Google Scholar 

  42. Gal A et al (2008) Sustained TGF beta exposure suppresses smad and non-smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene 27(9):1218–1230

    Article  PubMed  CAS  Google Scholar 

  43. Kaplan RN et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  PubMed  CAS  Google Scholar 

  44. Iwatsuki M et al (2010) The clinical significance of vimentin-expressing gastric cancer cells in bone marrow. Ann Surg Oncol 17(9):2526–2533

    Article  PubMed  Google Scholar 

  45. Shirahata A et al (2010) Detection of vimentin (VIM) methylation in the serum of colorectal cancer patients. Anticancer Res 30(12):5015–5018

    PubMed  Google Scholar 

  46. Sugimachi K et al (2003) Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin Cancer Res 9(7):2657–2664

    PubMed  CAS  Google Scholar 

  47. Miyoshi A et al (2005) Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 92(2):252–258

    PubMed  CAS  Google Scholar 

  48. Yin T et al (2007) Expression of snail in pancreatic cancer promotes metastasis and chemoresistance. J Surg Res 141(2):196–203

    Article  PubMed  CAS  Google Scholar 

  49. Natsugoe S et al (2007) Snail plays a key role in E-cadherin-preserved esophageal squamous cell carcinoma. Oncol Rep 17(3):517–523

    PubMed  CAS  Google Scholar 

  50. Shioiri M et al (2006) Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer 94(12):1816–1822

    Article  PubMed  CAS  Google Scholar 

  51. Uchikado Y et al (2005) Slug expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 11(3):1174–1180

    PubMed  CAS  Google Scholar 

  52. Yang MH et al (2009) Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology 50(5):1464–1474

    Article  PubMed  CAS  Google Scholar 

  53. Zhao XL et al (2011) Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelial-mesenchymal transition regulator Twist1. J Cell Mol Med 15(3):691–700

    Article  PubMed  CAS  Google Scholar 

  54. Lee TK et al (2006) Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res 12(18):5369–5376

    Article  PubMed  CAS  Google Scholar 

  55. Niu RF et al (2007) Up-regulation of twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma. J Exp Clin Cancer Res 26(3):385–394

    PubMed  CAS  Google Scholar 

  56. Gomez I et al (2011) TWIST1 is expressed in colorectal carcinomas and predicts patient survival. PLoS ONE 6(3):e18023

    Article  PubMed  CAS  Google Scholar 

  57. Ru GQ et al (2011) Upregulation of twist in gastric carcinoma associated with tumor invasion and poor prognosis. Pathol Oncol Res 17(2):341–347

    Article  PubMed  CAS  Google Scholar 

  58. Yan-Qi Z et al (2007) Expression and significance of TWIST basic helix-loop-helix protein over-expression in gastric cancer. Pathology 39(5):470–475

    Article  PubMed  CAS  Google Scholar 

  59. Ohk Sung C et al (2011) Twist1 is up-regulated in gastric cancer-associated fibroblasts with poor clinical outcomes. Am J Pathol 179(4):1827–1838

    Google Scholar 

  60. Gong T et al (2012) Nuclear expression of twist promotes lymphatic metastasis in esophageal squamous cell carcinoma. Cancer Biol Ther 13(8):606–613

    Article  PubMed  CAS  Google Scholar 

  61. Forghanifard MM et al (2012) Expression analysis elucidates the roles of MAML1 and Twist1 in esophageal squamous cell carcinoma aggressiveness and metastasis. Ann Surg Oncol 19(3):743–749

    Article  PubMed  Google Scholar 

  62. Xie F, Li K, Ouyang X (2009) Twist, an independent prognostic marker for predicting distant metastasis and survival rates of esophageal squamous cell carcinoma patients. Clin Exp Metastasis 26(8):1025–1032

    Article  PubMed  CAS  Google Scholar 

  63. Yuen HF et al (2007) Upregulation of twist in oesophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis. J Clin Pathol 60(5):510–514

    Article  PubMed  CAS  Google Scholar 

  64. Ohuchida K et al (2007) Twist, a novel oncogene, is upregulated in pancreatic cancer: clinical implication of twist expression in pancreatic juice. Int J Cancer 120(8):1634–1640

    Article  PubMed  CAS  Google Scholar 

  65. Sun T et al (2010) Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 51(2):545–556

    Article  PubMed  CAS  Google Scholar 

  66. Che N et al (2011) The role of Twist1 in hepatocellular carcinoma angiogenesis: a clinical study. Hum Pathol 42(6):840–847

    Article  PubMed  CAS  Google Scholar 

  67. Sun T et al (2011) Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: a study of hepatocellular carcinoma. Hepatology 54(5):1690–1706

    Google Scholar 

  68. Zhou YM et al (2011) Clinicopathological significance of ZEB1 protein in patients with hepatocellular carcinoma. Ann Surg Oncol 19(5):1700–1706

    Google Scholar 

  69. Zhu W et al (2011) Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelial-mesenchymaltransition. Gut 61(4):562–575

    Google Scholar 

  70. Tang DJ et al (2010) Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology 51(4):1255–1263

    Article  PubMed  CAS  Google Scholar 

  71. Lee NP et al (2010) Prognostic significance and therapeutic potential of eukaryotic translation initiation factor 5A (eIF5A) in hepatocellular carcinoma. Int J Cancer 127(4):968–976

    PubMed  CAS  Google Scholar 

  72. Meng HM et al (2010) Overexpression of nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther 9(4):295–302

    Google Scholar 

  73. Fu J et al (2011) p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1alpha pathways. Hepatology 53(1):181–192

    Article  PubMed  CAS  Google Scholar 

  74. Zheng P et al (2011) Snail as a key regulator of PRL-3 gene in colorectal cancer. Cancer Biol Ther 12(8):742–749

    Google Scholar 

  75. Kim NW et al (2011) Correlation between liver metastases and the level of PRL-3 mRNA expression in patients with primary colorectal cancer. J Korean Soc Coloproctol 27(5):231–236

    Article  PubMed  Google Scholar 

  76. Bardelli A et al (2003) PRL-3 expression in metastatic cancers. Clin Cancer Res 9(15):5607–5615

    PubMed  CAS  Google Scholar 

  77. Kato H et al (2004) High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin Cancer Res 10(21):7318–7328

    Article  PubMed  CAS  Google Scholar 

  78. Mollevi DG et al (2008) PRL-3 is essentially overexpressed in primary colorectal tumours and associates with tumour aggressiveness. Br J Cancer 99(10):1718–1725

    Article  PubMed  CAS  Google Scholar 

  79. Peng L et al (2004) The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J Cancer Res Clin Oncol 130(9):521–526

    Article  PubMed  CAS  Google Scholar 

  80. Guzinska-Ustymowicz K et al (2011) Immunohistochemical assessment of PRL-3 (PTP4A3) expression in tumor buds, invasion front, central region of tumor and metastases of colorectal cancer. Adv Med Sci 56(1):39–43

    Article  PubMed  CAS  Google Scholar 

  81. Miskad UA et al (2004) Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology 71(4):176–184

    Article  PubMed  CAS  Google Scholar 

  82. Ooki A et al (2009) Phosphatase of regenerating liver-3 as a prognostic biomarker in histologically node-negative gastric cancer. Oncol Rep 21(6):1467–1475

    PubMed  CAS  Google Scholar 

  83. Wang Z et al (2008) Expression and prognostic impact of PRL-3 in lymph node metastasis of gastric cancer: its molecular mechanism was investigated using artificial microRNA interference. Int J Cancer 123(6):1439–1447

    Article  PubMed  CAS  Google Scholar 

  84. Miskad UA et al (2007) High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study. Virchows Arch 450(3):303–310

    Article  PubMed  CAS  Google Scholar 

  85. Pryczynicz A et al (2010) PTP4A3 (PRL-3) expression correlate with lymphatic metastases in gastric cancer. Folia Histochem Cytobiol 48(4):632–636

    PubMed  Google Scholar 

  86. Zhao WB et al (2008) Evaluation of PRL-3 expression, and its correlation with angiogenesis and invasion in hepatocellular carcinoma. Int J Mol Med 22(2):187–192

    PubMed  CAS  Google Scholar 

  87. Mayinuer A et al (2012) Upregulation of protein tyrosine phosphatase type IVA member 3 (PTP4A3/PRL-3) is associated with tumor differentiation and a poor prognosis in human hepatocellular carcinoma. Ann Surg Oncol 20(1):305–317

    Google Scholar 

  88. Liu YQ et al (2008) Expression of phosphatase of regenerating liver 1 and 3 mRNA in esophageal squamous cell carcinoma. Arch Pathol Lab Med 132(8):1307–1312

    PubMed  CAS  Google Scholar 

  89. Ooki A et al (2010) Phosphatase of regenerating liver-3 as a convergent therapeutic target for lymph node metastasis in esophageal squamous cell carcinoma. Int J Cancer 127(3):543–554

    Article  PubMed  CAS  Google Scholar 

  90. Zheng P et al (2010) Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer. J Proteome Res 9(10):4897–4905

    Article  PubMed  CAS  Google Scholar 

  91. Hsieh SY et al (2010) Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog 49(5):476–487

    PubMed  CAS  Google Scholar 

  92. Wang H et al (2010) PCBP1 suppresses the translation of metastasis-associated PRL-3 phosphatase. Cancer Cell 18(1):52–62

    Article  PubMed  CAS  Google Scholar 

  93. Zhang T et al (2010) PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells. Mol Cancer 9:72

    Article  PubMed  CAS  Google Scholar 

  94. Wong SC et al (2004) Quantification of plasma beta-catenin mRNA in colorectal cancer and adenoma patients. Clin Cancer Res 10(5):1613–1617

    Article  PubMed  CAS  Google Scholar 

  95. Zekri AR et al (2011) Serum levels of beta-catenin as a potential marker for genotype 4/hepatitis C-associated hepatocellular carcinoma. Oncol Rep 26(4):825–831

    PubMed  CAS  Google Scholar 

  96. Gavert N et al (2005) L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168(4):633–642

    Article  PubMed  CAS  Google Scholar 

  97. Zander H et al (2011) Circulating levels of cell adhesion molecule L1 as a prognostic marker in gastrointestinal stromal tumor patients. BMC Cancer 11(189):1–7

    Google Scholar 

  98. Brabletz T, Jung A, Kirchner T (2002) Beta-catenin and the morphogenesis of colorectal cancer. Virchows Arch 441(1):1–11

    Article  PubMed  CAS  Google Scholar 

  99. Liu L et al (2010) Activation of beta-catenin by hypoxia in hepatocellular carcinoma contributes to enhanced metastatic potential and poor prognosis. Clin Cancer Res 16(10):2740–2750

    Article  PubMed  CAS  Google Scholar 

  100. Matsukuma S, Sato K (2011) Peritoneal seeding of hepatocellular carcinoma: clinicopathological characteristics of 17 autopsy cases. Pathol Int 61(6):356–362

    Article  PubMed  Google Scholar 

  101. Cheng XX et al (2005) Correlation of Wnt-2 expression and beta-catenin intracellular accumulation in Chinese gastric cancers: relevance with tumour dissemination. Cancer Lett 223(2):339–347

    Article  PubMed  CAS  Google Scholar 

  102. Choi MG et al (2010) Mucinous gastric cancer presents with more advanced tumor stage and weaker beta-catenin expression than nonmucinous cancer. Ann Surg Oncol 17(11):3053–3058

    Article  PubMed  Google Scholar 

  103. Takayama T et al (1998) Aberrant expression and phosphorylation of beta-catenin in human colorectal cancer. Br J Cancer 77(4):605–613

    Article  PubMed  CAS  Google Scholar 

  104. Miyamoto S et al (2004) Nuclear beta-catenin accumulation as a prognostic factor in Dukes’ D human colorectal cancers. Oncol Rep 12(2):245–251

    PubMed  CAS  Google Scholar 

  105. Chen WC et al (2007) Survey of molecular profiling during human colon cancer development and progression by immunohistochemical staining on tissue microarray. World J Gastroenterol 13(5):699–708

    PubMed  CAS  Google Scholar 

  106. Zhang B et al (2003) Beta-catenin and ras oncogenes detect most human colorectal cancer. Clin Cancer Res 9(8):3073–3079

    PubMed  CAS  Google Scholar 

  107. Hervieu V et al (2006) Expression of beta-catenin in gastroenteropancreatic endocrine tumours: a study of 229 cases. J Clin Pathol 59(12):1300–1304

    Article  PubMed  CAS  Google Scholar 

  108. Wang W, Xue L, Wang P (2011) Prognostic value of beta-catenin, c-myc, and cyclin D1 expressions in patients with esophageal squamous cell carcinoma. Med Oncol 28(1):163–169

    Article  PubMed  CAS  Google Scholar 

  109. Ben QW et al (2010) Positive expression of L1-CAM is associated with perineural invasion and poor outcome in pancreatic ductal adenocarcinoma. Ann Surg Oncol 17(8):2213–2221

    Article  PubMed  Google Scholar 

  110. Tsutsumi S et al (2011) L1 Cell adhesion molecule (L1CAM) expression at the cancer invasive front is a novel prognostic marker of pancreatic ductal adenocarcinoma. J Surg Oncol 103(7):669–673

    Article  PubMed  CAS  Google Scholar 

  111. Kim MY, Han SI, Lim SC (2011) Roles of cyclin-dependent kinase 8 and beta-catenin in the oncogenesis and progression of gastric adenocarcinoma. Int J Oncol 38(5):1375–1383

    PubMed  CAS  Google Scholar 

  112. Yang P et al (2009) Enhanced activity of very low density lipoprotein receptor II promotes SGC7901 cell proliferation and migration. Life Sci 84(13–14):402–408

    Article  PubMed  CAS  Google Scholar 

  113. He L et al (2010) Up-regulated expression of type II very low density lipoprotein receptor correlates with cancer metastasis and has a potential link to beta-catenin in different cancers. BMC Cancer 10:601

    Article  PubMed  Google Scholar 

  114. Kim B et al (2006) TC1(C8orf4) correlates with Wnt/beta-catenin target genes and aggressive biological behavior in gastric cancer. Clin Cancer Res 12(11 Pt 1):3541–3548

    Article  PubMed  CAS  Google Scholar 

  115. Boissan M et al (2010) Implication of metastasis suppressor NM23-H1 in maintaining adherens junctions and limiting the invasive potential of human cancer cells. Cancer Res 70(19):7710–7722

    Article  PubMed  CAS  Google Scholar 

  116. Zhang S et al (2011) EPLIN downregulation promotes epithelial-mesenchymal transition in prostate cancer cells and correlates with clinical lymph node metastasis. Oncogene 30(50):4941–4952

    Google Scholar 

  117. Yamaguchi A et al (1994) Expression of human nm23-H1 and nm23-H2 proteins in hepatocellular cacinoma. Cancer 73(9):2280–2284

    Article  PubMed  CAS  Google Scholar 

  118. Kodera Y et al (1994) Expression of nm23 H-1 RNA levels in human gastric cancer tissues. A negative correlation with nodal metastasis. Cancer 73(2):259–265

    Article  PubMed  CAS  Google Scholar 

  119. Liu WK et al (2009) The relationship between cyclooxygenase-2, CD44v6, and nm23H1 in esophageal squamous cell carcinoma. Onkologie 32(10):574–578

    Article  PubMed  CAS  Google Scholar 

  120. Liu WK et al (2005) The relationship between HPV16 and expression of CD44v6, nm23H1 in esophageal squamous cell carcinoma. Arch Virol 150(5):991–1001

    Article  PubMed  CAS  Google Scholar 

  121. Elagoz S et al (2006) The intratumoral microvessel density and expression of bFGF and nm23-H1 in colorectal cancer. Pathol Oncol Res 12(1):21–27

    Article  PubMed  CAS  Google Scholar 

  122. Felding-Habermann B (2003) Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis 20(3):203–213

    Article  PubMed  CAS  Google Scholar 

  123. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22

    Article  PubMed  CAS  Google Scholar 

  124. Ke JJ, Shao QS, Ling ZQ (2006) Expression of E-selectin, integrin beta1 and immunoglobulin superfamily member in human gastric carcinoma cells and its clinicopathologic significance. World J Gastroenterol 12(22):3609–3611

    PubMed  CAS  Google Scholar 

  125. Zhao ZS et al (2011) Expression and prognostic significance of CEACAM6, ITGB1, and CYR61 in peripheral blood of patients with gastric cancer. J Surg Oncol 104(5):525–529

    Article  PubMed  CAS  Google Scholar 

  126. Kuo ML et al (2005) Cyr61 induces gastric cancer cell motility/invasion via activation of the integrin/nuclear factor-kappa B/cyclooxygenase-2 signaling pathway. Clin Cancer Res 11(16):5809–5820

    Article  PubMed  Google Scholar 

  127. Li H et al (2011) HIF-1alpha-activated ANGPTL4 contributes to tumor metastasis via VCAM-1/integrin beta1 signaling in human hepatocellular carcinoma. Hepatology 54(3):910–919

    Google Scholar 

  128. Zhou G et al (2012) Detection and clinical significance of CD44v6 and integrin-beta1 in pancreatic cancer patients using a triplex real-time RT-PCR assay. Appl Biochem Biotechnol 167(8):2257–2268

    Article  PubMed  CAS  Google Scholar 

  129. Zhou G et al (2012) The efficacy evaluation of cryosurgery in pancreatic cancer patients with the expression of CD44v6, integrin-beta1, CA199, and CEA. Mol Biotechnol 52(1):59–67

    Article  PubMed  CAS  Google Scholar 

  130. Lu JG et al (2011) Overexpression of osteopontin and integrin alphav in laryngeal and hypopharyngeal carcinomas associated with differentiation and metastasis. J Cancer Res Clin Oncol 137(11):1613–1618

    Google Scholar 

  131. Wu CY et al (2007) Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut 56(6):782–789

    Article  PubMed  CAS  Google Scholar 

  132. Sun J et al (2010) The prognostic significance of preoperative plasma levels of osteopontin in patients with TNM stage-I of hepatocellular carcinoma. J Cancer Res Clin Oncol 136(1):1–7

    Article  PubMed  CAS  Google Scholar 

  133. Zhang H et al (2006) The prognostic significance of preoperative plasma levels of osteopontin in patients with hepatocellular carcinoma. J Cancer Res Clin Oncol 132(11):709–717

    Article  PubMed  CAS  Google Scholar 

  134. Shimada Y et al (2005) Clinical significance of osteopontin in esophageal squamous cell carcinoma: comparison with common tumor markers. Oncology 68(2–3):285–292

    Article  PubMed  CAS  Google Scholar 

  135. Wild N et al (2010) A combination of serum markers for the early detection of colorectal cancer. Clin Cancer Res 16(24):6111–6121

    Article  PubMed  CAS  Google Scholar 

  136. Fransvea E et al (2009) Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology 49(3):839–850

    Article  PubMed  CAS  Google Scholar 

  137. Zhao ZS et al (2010) SPARC is associated with gastric cancer progression and poor survival of patients. Clin Cancer Res 16(1):260–268

    Article  PubMed  CAS  Google Scholar 

  138. Ura H et al (1998) Separate functions of alpha2beta1 and alpha3beta1 integrins in the metastatic process of human gastric carcinoma. Surg Today 28(10):1001–1006

    Article  PubMed  CAS  Google Scholar 

  139. Giannelli G et al (2002) Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol 161(1):183–193

    Article  PubMed  CAS  Google Scholar 

  140. Hosotani R et al (2002) Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas 25(2):e30–e35

    Article  PubMed  Google Scholar 

  141. Likui W, Hong W, Shuwen Z (2010) Clinical significance of the upregulated osteopontin mRNA expression in human colorectal cancer. J Gastrointest Surg 14(1):74–81

    Article  PubMed  Google Scholar 

  142. Pan HW et al (2003) Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98(1):119–127

    Article  PubMed  CAS  Google Scholar 

  143. Ye QH et al (2003) Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med 9(4):416–423

    Article  PubMed  CAS  Google Scholar 

  144. Higashiyama M et al (2007) Prognostic significance of osteopontin expression in human gastric carcinoma. Ann Surg Oncol 14(12):3419–3427

    Article  PubMed  Google Scholar 

  145. Takafuji V et al (2007) An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene 26(44):6361–6371

    Article  PubMed  CAS  Google Scholar 

  146. Collins AL et al (2012) Osteopontin expression is associated with improved survival in patients with pancreatic adenocarcinoma. Ann Surg Oncol 19(8):2673–2678

    Google Scholar 

  147. Huang X et al (2009) Prognostic significance of altered expression of SDC2 and CYR61 in esophageal squamous cell carcinoma. Oncol Rep 21(4):1123–1129

    PubMed  CAS  Google Scholar 

  148. Zeng ZJ et al (2004) Expressions of cysteine-rich61, connective tissue growth factor and Nov genes in hepatocellular carcinoma and their clinical significance. World J Gastroenterol 10(23):3414–3418

    PubMed  CAS  Google Scholar 

  149. Weaver MS, Workman G, Sage EH (2008) The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin beta1 and activation of integrin-linked kinase. J Biol Chem 283(33):22826–22837

    Article  PubMed  CAS  Google Scholar 

  150. Wang CS et al (2004) Overexpression of SPARC gene in human gastric carcinoma and its clinic-pathologic significance. Br J Cancer 91(11):1924–1930

    Article  PubMed  CAS  Google Scholar 

  151. Che Y et al (2006) The differential expression of SPARC in esophageal squamous cell carcinoma. Int J Mol Med 17(6):1027–1033

    PubMed  CAS  Google Scholar 

  152. Nakayama T et al (2011) Expression of angiopoietin-like 4 (ANGPTL4) in human colorectal cancer: ANGPTL4 promotes venous invasion and distant metastasis. Oncol Rep 25(4):929–935

    Article  PubMed  CAS  Google Scholar 

  153. Makrilia N et al (2009) Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest 27(10):1023–1037

    Article  PubMed  CAS  Google Scholar 

  154. Hannigan GE et al (1996) Regulation of cell adhesion and anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 379(6560):91–96

    Article  PubMed  CAS  Google Scholar 

  155. Bravou V et al (2006) ILK over-expression in human colon cancer progression correlates with activation of beta-catenin, down-regulation of E-cadherin and activation of the Akt-FKHR pathway. J Pathol 208(1):91–99

    Article  PubMed  CAS  Google Scholar 

  156. Ito R et al (2003) Expression of integrin-linked kinase is closely correlated with invasion and metastasis of gastric carcinoma. Virchows Arch 442(2):118–123

    PubMed  CAS  Google Scholar 

  157. Chan J et al (2011) Integrin-linked kinase overexpression and its oncogenic role in promoting tumorigenicity of hepatocellular carcinoma. PLoS ONE 6(2):e16984

    Article  PubMed  CAS  Google Scholar 

  158. Wang WS et al (2004) Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23(39):6666–6671

    Article  PubMed  CAS  Google Scholar 

  159. Huang HC et al (2007) Thymosin beta4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26(19):2781–2790

    Article  PubMed  CAS  Google Scholar 

  160. Tang MC et al (2011) Thymosin beta 4 induces colon cancer cell migration and clinical metastasis via enhancing ILK/IQGAP1/Rac1 signal transduction pathway. Cancer Lett 308(2):162–171

    Article  PubMed  CAS  Google Scholar 

  161. Albasri A et al (2011) Cten signals through integrin-linked kinase (ILK) and may promote metastasis in colorectal cancer. Oncogene 30(26):2997–3002

    Article  PubMed  CAS  Google Scholar 

  162. Schwock J, Dhani N, Hedley DW (2010) Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets 14(1):77–94

    Article  PubMed  CAS  Google Scholar 

  163. Chen JS et al (2010) FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metastasis 27(2):71–82

    Article  PubMed  CAS  Google Scholar 

  164. Park JH et al (2010) Focal adhesion kinase (FAK) gene amplification and its clinical implications in gastric cancer. Hum Pathol 41(12):1664–1673

    Article  PubMed  CAS  Google Scholar 

  165. Su JM et al (2002) Expression of focal adhesion kinase and alpha5 and beta1 integrins in carcinomas and its clinical significance. World J Gastroenterol 8(4):613–618

    PubMed  CAS  Google Scholar 

  166. Miyazaki T et al (2003) FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer 89(1):140–145

    Article  PubMed  CAS  Google Scholar 

  167. Chatzizacharias NA et al (2010) Evaluation of the clinical significance of focal adhesion kinase and SRC expression in human pancreatic ductal adenocarcinoma. Pancreas 39(6):930–936

    Article  PubMed  CAS  Google Scholar 

  168. Furuyama K et al (2006) Clinical significance of focal adhesion kinase in resectable pancreatic cancer. World J Surg 30(2):219–226

    Article  PubMed  Google Scholar 

  169. Liu AW et al (2011) ShRNA-targeted MAP4K4 inhibits hepatocellular carcinoma growth. Clin Cancer Res 17(4):710–720

    Article  PubMed  CAS  Google Scholar 

  170. Hao JM et al (2010) A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer. J Pathol 220(4):475–489

    PubMed  CAS  Google Scholar 

  171. Liang JJ et al (2008) Expression of MAP4K4 is associated with worse prognosis in patients with stage II pancreatic ductal adenocarcinoma. Clin Cancer Res 14(21):7043–7049

    Article  PubMed  CAS  Google Scholar 

  172. Itoh S et al (2007) Role of growth factor receptor bound protein 7 in hepatocellular carcinoma. Mol Cancer Res 5(7):667–673

    Article  PubMed  CAS  Google Scholar 

  173. Tanaka S et al (2006) Specific peptide ligand for Grb7 signal transduction protein and pancreatic cancer metastasis. J Natl Cancer Inst 98(7):491–498

    Article  PubMed  CAS  Google Scholar 

  174. Peng L et al (2009) Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis 30(10):1660–1669

    Article  PubMed  CAS  Google Scholar 

  175. Wu F et al (2009) Novel role for epidermal growth factor-like domain 7 in metastasis of human hepatocellular carcinoma. Hepatology 50(6):1839–1850

    Article  PubMed  CAS  Google Scholar 

  176. Wu F et al (2011) Down-regulation of EGFL8: a novel prognostic biomarker for patients with colorectal cancer. Anticancer Res 31(6):2249–2254

    PubMed  CAS  Google Scholar 

  177. Parker LH et al (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428(6984):754–758

    Article  PubMed  CAS  Google Scholar 

  178. Fitch MJ et al (2004) Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn 230(2):316–324

    Article  PubMed  CAS  Google Scholar 

  179. Huang J et al (2010) Genetic and epigenetic silencing of SCARA5 may contribute to human hepatocellular carcinoma by activating FAK signaling. J Clin Invest 120(1):223–241

    Article  PubMed  CAS  Google Scholar 

  180. Chen M et al (2010) Genetic variations of the PI3K-AKT-mTOR pathway and clinical outcome in muscle invasive and metastatic bladder cancer patients. Carcinogenesis 31(8):1387–1391

    Article  PubMed  CAS  Google Scholar 

  181. Jiang BH, Liu LZ (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta 1784(1):150–158

    Article  PubMed  CAS  Google Scholar 

  182. Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  PubMed  CAS  Google Scholar 

  183. Bi J et al (2009) Overexpression of YKL-40 is an independent prognostic marker in gastric cancer. Hum Pathol 40(12):1790–1797

    Article  PubMed  CAS  Google Scholar 

  184. Zhu CB et al (2012) Elevated serum YKL-40 level predicts poor prognosis in hepatocellular carcinoma after surgery. Ann Surg Oncol 19(3):817–825

    Article  PubMed  Google Scholar 

  185. Zhang XW et al (2010) BMI1 and Mel-18 oppositely regulate carcinogenesis and progression of gastric cancer. Mol Cancer 9:40

    Article  PubMed  CAS  Google Scholar 

  186. Yoshioka A et al (2008) The activation of Akt during preoperative chemotherapy for esophageal cancer correlates with poor prognosis. Oncol Rep 19(5):1099–1107

    PubMed  CAS  Google Scholar 

  187. Yu G et al (2009) Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of Chinese patients with gastric cancer. Clin Cancer Res 15(5):1821–1829

    Article  PubMed  CAS  Google Scholar 

  188. Kasajima A et al (2011) mTOR expression and activity patterns in gastroenteropancreatic neuroendocrine tumours. Endocr Relat Cancer 18(1):181–192

    Article  PubMed  CAS  Google Scholar 

  189. An JY et al (2010) Prognostic role of p-mTOR expression in cancer tissues and metastatic lymph nodes in pT2b gastric cancer. Int J Cancer 126(12):2904–2913

    PubMed  CAS  Google Scholar 

  190. Zhang YJ et al (2009) mTOR signaling pathway is a target for the treatment of colorectal cancer. Ann Surg Oncol 16(9):2617–2628

    Article  PubMed  Google Scholar 

  191. Liao WT et al (2011) HOXB7 as a prognostic factor and mediator of colorectal cancer progression. Clin Cancer Res 17(11):3569–3578

    Article  PubMed  CAS  Google Scholar 

  192. Nguyen Kovochich A et al (2012) HOXB7 promotes invasion and predicts survival in pancreatic adenocarcinoma. Cancer 119(3):529–539

    Google Scholar 

  193. Song W et al (2010) Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci 101(7):1754–1760

    Article  PubMed  CAS  Google Scholar 

  194. Liu WL et al (2010) Prognostic relevance of Bmi-1 expression and autoantibodies in esophageal squamous cell carcinoma. BMC Cancer 10:467

    Article  PubMed  CAS  Google Scholar 

  195. Wang H et al (2008) Increased polycomb-group oncogene Bmi-1 expression correlates with poor prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 134(5):535–541

    Article  PubMed  CAS  Google Scholar 

  196. Sasaki M et al (2008) The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 88(8):873–882

    Article  PubMed  CAS  Google Scholar 

  197. Pang R et al (2010) A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 6(6):603–615

    Article  PubMed  CAS  Google Scholar 

  198. Iinuma H et al (2011) Clinical significance of circulating tumor cells, including cancer stem-like cells, in peripheral blood for recurrence and prognosis in patients with Dukes’ stage B and C colorectal cancer. J Clin Oncol 29(12):1547–1555

    Article  PubMed  Google Scholar 

  199. Lin EH et al (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 110(3):534–542

    Article  PubMed  CAS  Google Scholar 

  200. Mehra N et al (2006) Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases. Clin Cancer Res 12(16):4859–4866

    Article  PubMed  CAS  Google Scholar 

  201. Yu JW et al (2010) Expressions and clinical significances of CD133 protein and CD133 mRNA in primary lesion of gastric adenocacinoma. J Exp Clin Cancer Res 29:141

    Article  PubMed  CAS  Google Scholar 

  202. Hou Y et al (2011) The critical role of CD133(+)CD44(+/high) tumor cells in hematogenous metastasis of liver cancers. Cell Res 22(1):259–272

    Google Scholar 

  203. Kure S et al (2012) Expression of cancer stem cell markers in pancreatic intraepithelial neoplasias and pancreatic ductal adenocarcinomas. Int J Oncol  41(4):1314–1324

    Google Scholar 

  204. Maeda S et al (2008) CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br J Cancer 98(8):1389–1397

    Article  PubMed  CAS  Google Scholar 

  205. Yang XR et al (2009) CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin Cancer Res 15(17):5518–5527

    Article  PubMed  CAS  Google Scholar 

  206. Darwish NS et al (2004) Prognostic significance of CD24 expression in gastric carcinoma. Cancer Res Treat 36(5):298–302

    Article  PubMed  Google Scholar 

  207. Lee TK et al (2011) CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9(1):50–63

    Article  PubMed  CAS  Google Scholar 

  208. Ikenaga N et al (2010) Characterization of CD24 expression in intraductal papillary mucinous neoplasms and ductal carcinoma of the pancreas. Hum Pathol 41(10):1466–1474

    Article  PubMed  CAS  Google Scholar 

  209. Chen T et al (2011) Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients. Cell Res 22(1):248–258

    Google Scholar 

  210. Han ME et al (2011) Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cell Mol Life Sci 68(21):3589–3605

    Article  PubMed  CAS  Google Scholar 

  211. Yokoyama S, Yamaue H (2002) Prediction of distant metastasis by using reverse transcriptase-polymerase chain reaction for epithelial and variant CD44 mRNA in the peripheral blood of patients with colorectal cancer. Arch Surg 137(9):1069–1073

    Article  PubMed  CAS  Google Scholar 

  212. Bunger S et al (2012) Pancreatic carcinoma cell lines reflect frequency and variability of cancer stem cell markers in clinical tissue. Eur Surg Res 49(2):88–98

    Article  PubMed  CAS  Google Scholar 

  213. Wang Y et al (2012) Cancer stem cell marker ALDH1 expression is associated with lymph node metastasis and poor survival in esophageal squamous cell carcinoma: a study from high incidence area of northern China. Dis Esophagus 25(6):560–565

    Article  PubMed  CAS  Google Scholar 

  214. Minato T et al (2012) Aldehyde dehydrogenase 1 expression is associated with poor prognosis in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 20(1):209–217

    Google Scholar 

  215. Wakamatsu Y et al (2012) Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int 62(2):112–119

    Article  PubMed  Google Scholar 

  216. Chen XQ, He JR, Wang HY (2012) Decreased expression of ALDH1L1 is associated with a poor prognosis in hepatocellular carcinoma. Med Oncol 29(3):1843–1849

    Article  PubMed  CAS  Google Scholar 

  217. Hessman CJ et al (2012) Loss of expression of the cancer stem cell marker aldehyde dehydrogenase 1 correlates with advanced-stage colorectal cancer. Am J Surg 203(5):649–653

    Article  PubMed  CAS  Google Scholar 

  218. Kahlert C et al (2011) Low expression of aldehyde dehydrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer. BMC Cancer 11:275

    Article  PubMed  CAS  Google Scholar 

  219. Yang XR et al (2010) High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut 59(7):953–962

    Article  PubMed  CAS  Google Scholar 

  220. Lorusso G, Ruegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103

    Article  PubMed  CAS  Google Scholar 

  221. Liang JF et al (2010) Relationship and prognostic significance of SPARC and VEGF protein expression in colon cancer. J Exp Clin Cancer Res 29:71

    Article  PubMed  CAS  Google Scholar 

  222. Yoshimura T et al (2011) Lymphovascular invasion of colorectal cancer is correlated to SPARC expression in the tumor stromal microenvironment. Epigenetics 6(8):1001–1011

    Article  PubMed  CAS  Google Scholar 

  223. Infante JR et al (2007) Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 25(3):319–325

    Article  PubMed  Google Scholar 

  224. Imano M et al (2011) Osteopontin induced by macrophages contribute to metachronous liver metastases in colorectal cancer. Am Surg 77(11):1515–1520

    PubMed  Google Scholar 

  225. Wang JM et al (1993) A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int J Cancer 54(3):363–370

    Article  PubMed  CAS  Google Scholar 

  226. Bellone G et al (2007) Transforming growth factor-beta binding receptor endoglin (CD105) expression in esophageal cancer and in adjacent nontumorous esophagus as prognostic predictor of recurrence. Ann Surg Oncol 14(11):3232–3242

    Article  PubMed  Google Scholar 

  227. Ding S et al (2006) Comparative evaluation of microvessel density determined by CD34 or CD105 in benign and malignant gastric lesions. Hum Pathol 37(7):861–866

    Article  PubMed  CAS  Google Scholar 

  228. Yang LY et al (2006) Correlation between CD105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma. BMC Cancer 6:110

    Article  PubMed  CAS  Google Scholar 

  229. Ho JW et al (2005) Clinicopathological and prognostic implications of endoglin (CD105) expression in hepatocellular carcinoma and its adjacent non-tumorous liver. World J Gastroenterol 11(2):176–181

    PubMed  CAS  Google Scholar 

  230. Romani AA et al (2006) The risk of developing metastatic disease in colorectal cancer is related to CD105-positive vessel count. J Surg Oncol 93(6):446–455

    Article  PubMed  Google Scholar 

  231. Saad RS et al (2004) Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol 17(2):197–203

    Article  PubMed  CAS  Google Scholar 

  232. Koyama Y et al (2010) Overexpression of endoglin (CD105) is associated with recurrence in radically resected gastric cancer. Exp Ther Med 1(4):627–633

    PubMed  Google Scholar 

  233. Budhu A et al (2006) Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 10(2):99–111

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronnie Tung Ping Poon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, L., Poon, R.T.P. & Pang, R. Biomarkers for predicting future metastasis of human gastrointestinal tumors. Cell. Mol. Life Sci. 70, 3631–3656 (2013). https://doi.org/10.1007/s00018-013-1266-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1266-8

Keywords

Navigation