Skip to main content
Log in

Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

RNA-binding proteins play crucial roles in RNA processing and function as regulators of gene expression. Recent studies have defined the structural basis for RNA recognition by diverse RNA-binding motifs. While many RNA-binding proteins recognize RNA sequence non-specifically by associating with 5′ or 3′ RNA ends, sequence-specific recognition by RNA-binding proteins is typically achieved by combining multiple modular domains to form complex binding surfaces. In this review, we present examples of structures from different classes of RNA-binding proteins, identify the mechanisms utilized by them to target specific RNAs, and describe structural principles of how protein–protein interactions affect RNA recognition specificity. We also highlight the structural mechanism of sequence-dependent and -independent interactions in the Cas9-RNA-DNA complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PPR:

Pentatricopeptide repeat

Pre-mRNA:

Precursor messenger RNA

RBDs:

RNA-binding domains

TPR:

Tetratricopeptide repeat

PUF:

Pumilio-FBF

TZF:

TTP-like zinc finger

AGO:

Argonaute-like

FBF:

fem-3 binding factor

ssRNA:

Single-stranded RNA

TTP:

Tristetraprolin

PIWI:

P-element-induced wimpy testes

PAZ:

PIWI, Argonaute, and Zwille

MDA5:

Melanoma differentiation-associated gene 5

RIG-I:

Retinoic acid-inducible gene I

PPP-RNA:

5′ triphosphate RNA

RRM:

RNA recognition motif

U2AF:

U2 auxiliary factor

hnRNP:

Heterogeneous nuclear ribonucleoprotein

CRISPR:

Clustered regularly interspaced short palindromic repeats

References

  1. Abbas YM, Pichlmair A, Gorna MW, Superti-Furga G, Nagar B (2013) Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins. Nature 494:60–64

    Article  CAS  PubMed  Google Scholar 

  2. Abbasi N, Park YI, Choi SB (2011) Pumilio Puf domain RNA-binding proteins in Arabidopsis. Plant Signal Behav 6:364–368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Abil Z, Denard CA, Zhao H (2014) Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA. J Biol Eng 8:7

    Article  PubMed Central  PubMed  Google Scholar 

  4. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    Article  CAS  PubMed  Google Scholar 

  5. Ban T, Ke J, Chen R, Gu X, Tan MH, Zhou XE, Kang Y, Melcher K, Zhu JK, Xu HE (2013) Structure of a PLS-class pentatricopeptide repeat protein provides insights into mechanism of RNA recognition. J Biol Chem 288:31540–31548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Barkan A, Rojas M, Fujii S, Yap A, Chong YS, Bond CS, Small I (2012) A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8:e1002910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    Article  CAS  PubMed  Google Scholar 

  8. Clery A, Sinha R, Anczukow O, Corrionero A, Moursy A, Daubner GM, Valcarcel J, Krainer AR, Allain FH (2013) Isolated pseudo-RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition. Proc Natl Acad Sci USA 110:E2802–E2811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM (1999) Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev 13:1102–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Dominguez C, Fisette JF, Chabot B, Allain FH (2010) Structural basis of G-tract recognition and encaging by hnRNP F quasi-RRMs. Nat Struct Mol Biol 17:853–861

    Article  CAS  PubMed  Google Scholar 

  11. Edwards TA, Pyle SE, Wharton RP, Aggarwal AK (2001) Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105:281–289

    Article  CAS  PubMed  Google Scholar 

  12. Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150:100–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Howard MJ, Lim WH, Fierke CA, Koutmos M (2012) Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5′ processing. Proc Natl Acad Sci USA 109:16149–16154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Hudson BP, Martinez-Yamout MA, Dyson HJ, Wright PE (2004) Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 11:257–264

    Article  CAS  PubMed  Google Scholar 

  16. Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M Jr, Patel SS, Marcotrigiano J (2011) Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479:423–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S et al (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997

    Article  PubMed Central  PubMed  Google Scholar 

  18. Johnson X, Wostrikoff K, Finazzi G, Kuras R, Schwarz C, Bujaldon S, Nickelsen J, Stern DB, Wollman FA, Vallon O (2010) MRL1, a conserved Pentatricopeptide repeat protein, is required for stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis. Plant Cell 22:234–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kaymak E, Wee LM, Ryder SP (2010) Structure and function of nematode RNA-binding proteins. Curr Opin Struct Biol 20:305–312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ke J, Chen RZ, Ban T, Zhou XE, Gu X, Tan MH, Chen C, Kang Y, Brunzelle JS, Zhu JK et al (2013) Structural basis for RNA recognition by a dimeric PPR-protein complex. Nat Struct Mol Biol 20:1377–1382

    Article  CAS  PubMed  Google Scholar 

  21. Khrouchtchova A, Monde RA, Barkan A (2012) A short PPR protein required for the splicing of specific group II introns in angiosperm chloroplasts. RNA 18:1197–1209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kielkopf CL, Rodionova NA, Green MR, Burley SK (2001) A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 106:595–605

    Article  CAS  PubMed  Google Scholar 

  23. Lambert SM, Langley DR, Garnett JA, Angell R, Hedgethorne K, Meanwell NA, Matthews SJ (2014) The crystal structure of NS5A domain 1 from genotype 1a reveals new clues to the mechanism of action for dimeric HCV inhibitors. Protein Sci 23:723–734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lunde BM, Moore C, Varani G (2007) RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8:479–490

    Article  CAS  PubMed  Google Scholar 

  25. Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B et al (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670

    Article  CAS  PubMed  Google Scholar 

  27. Ngo JC, Giang K, Chakrabarti S, Ma CT, Huynh N, Hagopian JC, Dorrestein PC, Fu XD, Adams JA, Ghosh G (2008) A sliding docking interaction is essential for sequential and processive phosphorylation of an SR protein by SRPK1. Mol Cell 29:563–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  CAS  PubMed  Google Scholar 

  29. O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128

    Article  PubMed  Google Scholar 

  30. Pinker F, Bonnard G, Gobert A, Gutmann B, Hammani K, Sauter C, Gegenheimer PA, Giege P (2013) PPR proteins shed a new light on RNase P biology. RNA Biol 10. doi:10.4161/rna.25273

  31. Ringel R, Sologub M, Morozov YI, Litonin D, Cramer P, Temiakov D (2011) Structure of human mitochondrial RNA polymerase. Nature 478:269–273

    Article  CAS  PubMed  Google Scholar 

  32. Small ID, Peeters N (2000) The PPR motif—a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  CAS  PubMed  Google Scholar 

  33. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    Article  CAS  PubMed  Google Scholar 

  34. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Wang X, McLachlan J, Zamore PD, Hall TM (2002) Modular recognition of RNA by a human pumilio-homology domain. Cell 110:501–512

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Zamore PD, Hall TM (2001) Crystal structure of a Pumilio homology domain. Mol Cell 7:855–865

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456:921–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276–289

    Article  CAS  PubMed  Google Scholar 

  39. Yin P, Li Q, Yan C, Liu Y, Liu J, Yu F, Wang Z, Long J, He J, Wang HW et al (2013) Structural basis for the modular recognition of single-stranded RNA by PPR proteins. Nature 504:168–171

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Madl T, Bagdiul I, Kern T, Kang HS, Zou P, Mausbacher N, Sieber SA, Kramer A, Sattler M (2013) Structure, phosphorylation and U2AF65 binding of the N-terminal domain of splicing factor 1 during 3′-splice site recognition. Nucleic Acids Res 41:1343–1354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Zhou Y, Zhu S, Cai C, Yuan P, Li C, Huang Y, Wei W (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–491

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, T., Zhu, JK., Melcher, K. et al. Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex. Cell. Mol. Life Sci. 72, 1045–1058 (2015). https://doi.org/10.1007/s00018-014-1779-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1779-9

Keywords

Navigation