Skip to main content
Log in

Three-dimensional structures of laccases

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Laccases are phenol oxidases that belong to the family of multi-copper oxidases and the superfamily of cupredoxins. A number of potential industrial applications for laccases have led to intensive structure-function studies and an increased amount of crystal structures has been solved. The objective of this review is to summarize and analyze available crystal structures of laccases. The experimental crystallographic data are now easily available from the websites and electron density maps can be used for the interpretation of the structural models. The crystal structures can give valuable insights into the functional mechanisms and may serve as the basis for the development of laccases for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5:310–316

    Article  CAS  PubMed  Google Scholar 

  2. Hakulinen N, Kiiskinen L-L, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear site. Nat Struct Biol 9:601–605

    CAS  PubMed  Google Scholar 

  3. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333

    Article  CAS  PubMed  Google Scholar 

  4. Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Article  CAS  PubMed  Google Scholar 

  5. Enquita FJ, Martis L, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component. J Biol Chem 278:19416–19425

    Article  Google Scholar 

  6. Kleywegt GJ, Harris MR, Taylor TC, Wählby A, Jones A (2004) The Uppsala electron-density Server. Acta Crystallogr D60:2240–2249

    CAS  Google Scholar 

  7. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60:2126–2132

    Article  PubMed  Google Scholar 

  8. Pozharski E, Weichenberger CX, Rupp B (2013) Techniques, tools and best practices for ligand electron-density analysis and results from their application to deposited crystal structures. Acta Cryst D 69:150–167

    Article  CAS  Google Scholar 

  9. Murphy LM, Strange RW, Karlsson BG, Lundberg LG, Pascher T, Reinhammar B, Hasnain SS (1993) Structural characterization of azurin from Pseudomonas aeruginosa and some of its methionine-121 mutants. Biochemistry 32:1965–1975

    Article  CAS  PubMed  Google Scholar 

  10. Colman PM, Freeman HC, Guss JM, Murata M, Noms VA, Ramshaw JAM, Venkatappa MP (1978) X-ray crystal structure analysis of plastocyanin at 2.7 Å resolution. Nature 272:319–324

    Article  CAS  Google Scholar 

  11. Adman ET, Stenkamp RE, Sieker LC, Jensen LH (1978) A crystallographic model for azurin at 3 Å resolution. J Mol Biol 123:35–47

    Article  CAS  PubMed  Google Scholar 

  12. Murphy MEP, Turley S, Adman ET (1997) Structure of nitrite bound to copper-containing nitrite reductase from Alcaligenes faecalis. J Biol Chem 272:28455–28460

    Article  CAS  PubMed  Google Scholar 

  13. Zaitseva I, Zaitsev V, Card G, Moshkov K, Bax B, Ralph A, Lindley P (1996) The X-ray structure of human serum ceruloplasmin at 3.1 Å: nature of the copper centres. J Biol Inorg Chem 1:15–23

    Article  CAS  Google Scholar 

  14. Nakamura K, Kawabata T, Yura K, Go N Novel types of two-domain multi-copper oxidases: possible missing links in the evolution. Febs Lett. 553, 239–244

  15. Skálová T, Dohnálek J, Østergaard LH, Østergaard PR, Kolenko P, Dusková J, Stepánková A, Hasek J (2009) The structure of the small laccase from Streptomyces coelicolor reveals a link between laccases and nitrite reductases. J Mol Biol 385:1165–1178

    Article  PubMed  Google Scholar 

  16. Lawton TJ, Sayavedra-Soto LA, Arp DJ, Rozenweig AC (2009) Crystal structure of a two-domain multicopper oxidase. J Biol Chem 284:10174–10180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Komori H, Miyazaki K, Higuchi Y (2009) X-ray structure of a two-domain type laccase: a missing link in the evolution of multi-copper proteins. FEBS Lett 583:1189–1195

    Article  CAS  PubMed  Google Scholar 

  18. Lyashenko AV, Bento I, Zaitsev VN, Zhukhlistova NE, Zhukova YN, Gabdoulkhakov AG, Morgunova EY, Voelter W, Kachalova GS, Stepanova EV, Koroleva OV, Lamzin VS, Tishkov VI, Betzel C, Lindley PF, Mikhailov AM (2006) X-ray structural studies of the fungal laccase from Cerrena maxima. J Biol Inorg Chem 11:963–973

    Article  CAS  PubMed  Google Scholar 

  19. De la Mora E, Lovett JE, Blanford CF, Garman EF, Valderrama B, Rudino-Pinera E (2012) Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxdase. Acta Cryst D 78:564–577

    Article  Google Scholar 

  20. Lyashenko AV, Zhukova YN, Zhukhlistova NE, Zaitsev VN, Stepanova EV (2006) Three-dimensional structure of laccase from Coriolus zonatus at 2.6 Å resolution. Crystallogr Rep 51:817–823

    Article  CAS  Google Scholar 

  21. Ferraroni M, Myasoedova NM, Schmatchenko V, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F (2007) Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases. BMC Struct Biol 7:60

    Article  PubMed Central  PubMed  Google Scholar 

  22. Antorini M, Herpöel-Gimbert I, Choinowski T, Sigolloit J-C, Asther M, Winterhalter K, Piontek K (2002) Purification, crystallisation and X-ray diffraction study of fully functional laccases from two ligninolytic fungi. Biochim Biophys Acta 1594:109–114

    Article  CAS  PubMed  Google Scholar 

  23. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531

    Article  CAS  PubMed  Google Scholar 

  24. Ferraroni M, Matera I, Chernykh A, Kolomytseva M, Golovleva LA, Scozzafava A, Briganti F (2012) Reaction intermediates and redox state changes in a blue laccase from Steccherinum ochraceum observed by crystallographic high/low X-ray dose experiments. J Inorg Biochem 11:203–209

    Article  Google Scholar 

  25. Kallio JP, Gasparetti C, Andberg M, Boer H, Koivula A, Kruus K, Rouvinen J, Hakulinen N (2011) Crystal structure of an ascomycete fungal laccase from Thielavia arenaria: common structural features of asco-laccases. FEBS J 278:2283–2295

    Article  CAS  PubMed  Google Scholar 

  26. Polyakov KM, Fedorova TV, Stepanova EV, Cherkashin EA, Kurzeev SA, Strokopytov BV, Lamzin VS, Koroleva OV (2009) Structure of native laccase from Trametes hirsuta at 1.8 Å resolution. Acta Cryst. D65:611–617

    Google Scholar 

  27. Matera I, Gullotto A, Tilli S, Ferraroni M, Scozzafava A, Briganti F (2008) Crystal structure of the blue multicopper oxidase from the whiterot fungus Trametes trogii complexed with p-toluate. Inorg Chim Acta 361:4129–4137

    Article  CAS  Google Scholar 

  28. Roberts SA, Wildner GF, Grass G, Weichsel A, Ambrus A, Rensing C, Montfort WR (2003) A labile regulatory copper ion lies near the T1 copper site in the multicopper oxidase CueO. J Biol Chem 278:31958–31963

    Article  CAS  PubMed  Google Scholar 

  29. Silva CS, Durao P, Fillat A, Lindley PF, Martins L, Bento I (2012) Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: characterization of a metallo-oxidase. Metallomics 4:37–47

    Article  CAS  PubMed  Google Scholar 

  30. Taylor A, Stoj CS, Ziegler L, Kosman DJ, Hart J (2005) The copper–iron connection in biology: structure of a metallo-oxidase Fet3p. PNAS 102:15459–15464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Messerschmidt A, Ladenstein R, Huber R (1992) Refined crystal structure of ascorbate oxidase at 1.9 Å resolution. J Mol Biol 224:179–205

    Article  CAS  PubMed  Google Scholar 

  32. Izutani K, Toyoda M, Sagara K, Takahashi N, Sato A, Kamitaka Y, Tsujimura S, Nakanishi Y, Yamaguchi S, Kanob K, Mikamia B (2010) X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 Å resolution using a twinned crystal. Acta Cryst F 66(7):765–770

    Article  Google Scholar 

  33. Cracknell JA, McNamara TP, Lowe ED, Blanford CF (2011) Bilirubin oxidase from Myrothecium verrucaria: x-ray determination of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction. Dalton Trans 40:765–770

    Google Scholar 

  34. Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Gronan JE, Gerlt JA (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53:4047–4058

    Article  CAS  PubMed  Google Scholar 

  35. Gunne M, Höppner A Hagedoorn P-L, Urlacher VB (2014) Structural and redox properties of the small laccase Ssl1 from Streptomyces sviceus FEBS J 281:4307–4311

    Article  CAS  PubMed  Google Scholar 

  36. Kallio JP, Auer S, Jänis J, Andberg M, Kruus K, Rouvinen J, Koivula A, Hakulinen N (2009) Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. J Mol Biol 392:895–909

    Article  CAS  PubMed  Google Scholar 

  37. Enguita FJ, Marçal D, Martins LO, Grenha R, Henriques AO, Lindley PF, Carrondo MA (2004) Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis. J Biol Chem 279:23472–23476

    Article  CAS  PubMed  Google Scholar 

  38. Bento I, Martins LO, Lopes GG, Carrondo MA, Lindley PF (2005) Dioxygen reduction by multi-copper oxidases; a structural perspective. Dalton Trans 7:3507–3513

    Article  Google Scholar 

  39. Hakulinen N, Kruus K, Koivula A, Rouvinen J (2006) A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase. Biochem Biophys Res Commun 350:929–934

    Article  CAS  PubMed  Google Scholar 

  40. Andberg M, Hakulinen N, Auer S, Saloheimo M, Koivula A, Rouvinen J, Kruus K (2009) Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. FEBS J 276:6285–6300

    Article  CAS  PubMed  Google Scholar 

  41. Durao P, Chen CS, Silva CS, Soares CM, Pereira MM, Todorovic S, Hildebrandt P, Bento I, Lindley PF, Martins LO (2008) Proximal Mutations at the type 1 copper site of cota laccase: spectroscopic, redox, kinetic and structural characterization of I494a and L386a mutants. Biochem J 412:339–346

    Article  CAS  PubMed  Google Scholar 

  42. Chen Z, Durao P, Silva CS, Pereira MM, Todorovic S, Hildebrandt P, Bento I, Lindley PF, Martins LO (2010) The role of Glu498 in the dioxygen reactivity of cota-laccase from Bacillus Subtilis. Dalton Trans 39:2875–2882

    Article  CAS  PubMed  Google Scholar 

  43. Silva CS, Damas JM, Chen Z, Brissos V, Martins LO, Soares CM, Lindley PF, Bento I (2012) The role of Asp116 in the reductive cleavage of dioxygen to water in cota laccase: assistance during the proton transfer mechanism. Acta Cryst D 68:186–193

    Article  CAS  Google Scholar 

  44. Gupta A, Nederlof I, Sottini S, Tepper AWJW, Groenen EJJ, Thomassen EAJ, Canters GW (2012) Involvement of Tyr108 in the enzyme mechanism of the small laccase from Streptomyces coelicolor. J Am Chem Soc 134:18213–18216

    Article  CAS  PubMed  Google Scholar 

  45. Kallio JP, Rouvinen J, Kruus K, Hakulinen N (2011) Probing the dioxygen route in Melanocarpus albomyces laccase with pressurized xenon gas. Biochemistry 50:4396–4398

    Article  CAS  PubMed  Google Scholar 

  46. Quintanar L, Stoj C, Wang TP, Kosman DJ, Solomon EI (2005) Role of spartate 94 in the decay of the peroxide intermediate in the multicopper oxidase Fet3p. Biochemistry 44:6081–6091

    Article  CAS  PubMed  Google Scholar 

  47. Ferraroni M, Matera I, Chernykh A, Kolomytseva M, Golovleva LA, Scozzafava A, Briganti F (2012) Reaction intermediates and redox state changes in a blue laccase from Steccherinum ochraceum observed by crystallographic high/low X-ray dose experiments. J Inorg Biochem 111:203–209

    Article  CAS  PubMed  Google Scholar 

  48. De la Mora E, Lovett JE, Blanford C, Gramna EF, Valderrama B, Rudino-Pinera E (2012) Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. Acta Cryst D 68:564–577

    Article  Google Scholar 

  49. Komori H, Sugiyama R, Kataoka K, Miyazaki K, Higuchi Y, Sakurai T (2014) New insights into the catalytic-site structure of multicopper oxidases. Acta Cryst D70:772–779

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Academy of Finland (Project 256937 and 263931).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rouvinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakulinen, N., Rouvinen, J. Three-dimensional structures of laccases. Cell. Mol. Life Sci. 72, 857–868 (2015). https://doi.org/10.1007/s00018-014-1827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1827-5

Keywords

Navigation