Skip to main content
Log in

Elevated post-ischemic ubiquitination results from suppression of deubiquitinase activity and not proteasome inhibition

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cerebral ischemia–reperfusion increases intraneuronal levels of ubiquitinated proteins, but the factors driving ubiquitination and whether it results from altered proteostasis remain unclear. To address these questions, we used in vivo and in vitro models of cerebral ischemia–reperfusion, in which hippocampal slices were transiently deprived of oxygen and glucose to simulate ischemia followed by reperfusion, or the middle cerebral artery was temporarily occluded in mice. We found that post-ischemic ubiquitination results from two key steps: restoration of ATP at reperfusion, which allows initiation of protein ubiquitination, and free radical production, which, in the presence of sufficient ATP, increases ubiquitination above pre-ischemic levels. Surprisingly, free radicals did not augment ubiquitination through inhibition of the proteasome as previously believed. Although reduced proteasomal activity was detected after ischemia, this was neither caused by free radicals nor sufficient in magnitude to induce appreciable accumulation of proteasomal target proteins or ubiquitin–proteasome reporters. Instead, we found that ischemia-derived free radicals inhibit deubiquitinases, a class of proteases that cleaves ubiquitin chains from proteins, which was sufficient to elevate ubiquitination after ischemia. Our data provide evidence that free radical-dependent deubiquitinase inactivation rather than proteasomal inhibition drives ubiquitination following ischemia–reperfusion, and as such call for a reevaluation of the mechanisms of post-ischemic ubiquitination, previously attributed to altered proteostasis. Since deubiquitinase inhibition is considered an endogenous neuroprotective mechanism to shield proteins from oxidative damage, modulation of deubiquitinase activity may be of therapeutic value to maintain protein integrity after an ischemic insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data needed to evaluate the conclusions in the paper are present in the manuscript.

References

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on E, Prevention Statistics C, Stroke Statistics S (2019) Heart Disease and Stroke Statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528. https://doi.org/10.1161/CIR.0000000000000659

    Article  PubMed  Google Scholar 

  2. Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Primers 5(1):70. https://doi.org/10.1038/s41572-019-0118-8

    Article  PubMed  Google Scholar 

  3. Mendez AA, Samaniego EA, Sheth SA, Dandapat S, Hasan DM, Limaye KS, Hindman BJ, Derdeyn CP, Ortega-Gutierrez S (2018) Update in the early management and reperfusion strategies of patients with acute ischemic stroke. Crit Care Res Pract 2018:9168731. https://doi.org/10.1155/2018/9168731

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tawil SE, Cheripelli B, Huang X, Moreton F, Kalladka D, MacDougal NJ, McVerry F, Muir KW (2016) How many stroke patients might be eligible for mechanical thrombectomy? Eur Stroke J 1(4):264–271. https://doi.org/10.1177/2396987316667176

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rinaldo L, Rabinstein AA, Cloft H, Knudsen JM, Castilla LR, Brinjikji W (2019) Racial and ethnic disparities in the utilization of thrombectomy for acute stroke. Stroke 50(9):2428–2432. https://doi.org/10.1161/STROKEAHA.118.024651

    Article  PubMed  Google Scholar 

  6. Bosetti F, Koenig JI, Ayata C, Back SA, Becker K, Broderick JP, Carmichael ST, Cho S, Cipolla MJ, Corbett D, Corriveau RA, Cramer SC, Ferguson AR, Finklestein SP, Ford BD, Furie KL, Hemmen TM, Iadecola C, Jakeman LB, Janis S, Jauch EC, Johnston KC, Kochanek PM, Kohn H, Lo EH, Lyden PD, Mallard C, McCullough LD, McGavern LM, Meschia JF, Moy CS, Perez-Pinzon MA, Ramadan I, Savitz SI, Schwamm LH, Steinberg GK, Stenzel-Poore MP, Tymianski M, Warach S, Wechsler LR, Zhang JH, Koroshetz W (2017) Translational stroke research: vision and opportunities. Stroke 48(9):2632–2637. https://doi.org/10.1161/STROKEAHA.117.017112

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chamorro A, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15(8):869–881. https://doi.org/10.1016/S1474-4422(16)00114-9

    Article  CAS  PubMed  Google Scholar 

  8. Hershko A, Eytan E, Ciechanover A, Haas AL (1982) Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J Biol Chem 257(23):13964–13970

    Article  CAS  PubMed  Google Scholar 

  9. Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270(29):17442–17456

    Article  CAS  PubMed  Google Scholar 

  10. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33(3):275–286

    Article  CAS  PubMed  Google Scholar 

  11. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  12. Menendez-Benito V, Verhoef LG, Masucci MG, Dantuma NP (2005) Endoplasmic reticulum stress compromises the ubiquitin-proteasome system. Hum Mol Genet 14(19):2787–2799. https://doi.org/10.1093/hmg/ddi312

    Article  CAS  PubMed  Google Scholar 

  13. Salomons FA, Menendez-Benito V, Bottcher C, McCray BA, Taylor JP, Dantuma NP (2009) Selective accumulation of aggregation-prone proteasome substrates in response to proteotoxic stress. Mol Cell Biol 29(7):1774–1785. https://doi.org/10.1128/MCB.01485-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968):895–899

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Yen J, Kaiser P, Huang L (2010) Regulation of the 26S proteasome complex during oxidative stress. Sci Signal 3(151):ra88. https://doi.org/10.1126/scisignal.2001232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fornace AJ Jr, Alamo I Jr, Hollander MC, Lamoreaux E (1989) Ubiquitin mRNA is a major stress-induced transcript in mammalian cells. Nucleic Acids Res 17(3):1215–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shang F, Gong X, Taylor A (1997) Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up-regulated. J Biol Chem 272(37):23086–23093

    Article  CAS  PubMed  Google Scholar 

  18. Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9(2):543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440(7083):551–555. https://doi.org/10.1038/nature04600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cotto-Rios XM, Bekes M, Chapman J, Ueberheide B, Huang TT (2012) Deubiquitinases as a signaling target of oxidative stress. Cell Rep 2(6):1475–1484. https://doi.org/10.1016/j.celrep.2012.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee JG, Baek K, Soetandyo N, Ye Y (2013) Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 4:1568. https://doi.org/10.1038/ncomms2532

    Article  CAS  PubMed  Google Scholar 

  22. Silva GM, Finley D, Vogel C (2015) K63 polyubiquitination is a new modulator of the oxidative stress response. Nat Struct Mol Biol 22(2):116–123. https://doi.org/10.1038/nsmb.2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arnason T, Ellison MJ (1994) Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol 14(12):7876–7883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pickart CM (1999) Ubiquitin and the stress response. In: Latchman DS (ed) Stress proteins. Springer, Heidelberg, pp 133–152. https://doi.org/10.1007/978-3-642-58259-2_6

    Chapter  Google Scholar 

  25. Hayashi T, Takada K, Matsuda M (1992) Post-transient ischemia increase in ubiquitin conjugates in the early reperfusion. NeuroReport 3(6):519–520

    Article  CAS  PubMed  Google Scholar 

  26. Hochrainer K, Jackman K, Anrather J, Iadecola C (2012) Reperfusion rather than ischemia drives the formation of ubiquitin aggregates after middle cerebral artery occlusion. Stroke 43(8):2229–2235. https://doi.org/10.1161/STROKEAHA.112.650416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu BR, Janelidze S, Ginsberg MD, Busto R, Perez-Pinzon M, Sick TJ, Siesjo BK, Liu CL (2001) Protein aggregation after focal brain ischemia and reperfusion. J Cereb Blood Flow Metab 21(7):865–875

    Article  CAS  PubMed  Google Scholar 

  28. Hochrainer K (2018) Protein modifications with ubiquitin as response to cerebral ischemia-reperfusion injury. Transl Stroke Res 9(2):157–173. https://doi.org/10.1007/s12975-017-0567-x

    Article  CAS  PubMed  Google Scholar 

  29. Hata R, Maeda K, Hermann D, Mies G, Hossmann KA (2000) Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 20(6):937–946

    Article  CAS  PubMed  Google Scholar 

  30. Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27(5):1129–1138. https://doi.org/10.1523/JNEUROSCI.4468-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21(1):2–14. https://doi.org/10.1097/00004647-200101000-00002

    Article  CAS  PubMed  Google Scholar 

  32. Ge P, Luo Y, Liu CL, Hu B (2007) Protein aggregation and proteasome dysfunction after brain ischemia. Stroke 38(12):3230–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keller JN, Huang FF, Zhu H, Yu J, Ho YS, Kindy TS (2000) Oxidative stress-associated impairment of proteasome activity during ischemia-reperfusion injury. J Cereb Blood Flow Metab 20(10):1467–1473

    Article  CAS  PubMed  Google Scholar 

  34. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH (2005) Modulation of p53 degradation via MDM2-mediated ubiquitylation and the ubiquitin-proteasome system during reperfusion after stroke: role of oxidative stress. J Cereb Blood Flow Metab 25(2):267–280

    Article  CAS  PubMed  Google Scholar 

  35. Asai A, Tanahashi N, Qiu JH, Saito N, Chi S, Kawahara N, Tanaka K, Kirino T (2002) Selective proteasomal dysfunction in the hippocampal CA1 region after transient forebrain ischemia. J Cereb Blood Flow Metab 22(6):705–710

    Article  PubMed  Google Scholar 

  36. Jackman K, Kunz A, Iadecola C (2011) Modeling focal cerebral ischemia in vivo. Methods Mol Biol 793:195–209. https://doi.org/10.1007/978-1-61779-328-8_13

    Article  CAS  PubMed  Google Scholar 

  37. Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37(2):173–182

    Article  CAS  PubMed  Google Scholar 

  38. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C (2006) Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 12(2):225–229. https://doi.org/10.1038/nm1362

    Article  CAS  PubMed  Google Scholar 

  39. Hochrainer K, Jackman K, Benakis C, Anrather J, Iadecola C (2015) SUMO2/3 is associated with ubiquitinated protein aggregates in the mouse neocortex after middle cerebral artery occlusion. J Cereb Blood Flow Metab 35(1):1–5. https://doi.org/10.1038/jcbfm.2014.180

    Article  CAS  PubMed  Google Scholar 

  40. Kahl A, Blanco I, Jackman K, Baskar J, Milaganur Mohan H, Rodney-Sandy R, Zhang S, Iadecola C, Hochrainer K (2018) Cerebral ischemia induces the aggregation of proteins linked to neurodegenerative diseases. Sci Rep 8(1):2701. https://doi.org/10.1038/s41598-018-21063-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mulder MP, Witting K, Berlin I, Pruneda JN, Wu KP, Chang JG, Merkx R, Bialas J, Groettrup M, Vertegaal AC, Schulman BA, Komander D, Neefjes J, El Oualid F, Ovaa H (2016) A cascading activity-based probe sequentially targets E1–E2-E3 ubiquitin enzymes. Nat Chem Biol 12(7):523–530. https://doi.org/10.1038/nchembio.2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  43. Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG (2000) Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol 18(5):538–543. https://doi.org/10.1038/75406

    Article  CAS  PubMed  Google Scholar 

  44. Bence NF, Bennett EJ, Kopito RR (2005) Application and analysis of the GFPu family of ubiquitin-proteasome system reporters. Methods Enzymol 399:481–490

    Article  CAS  PubMed  Google Scholar 

  45. Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KG, Konietzny R, Fischer R, Kogan E, Mackeen MM, McGouran J, Khoronenkova SV, Parsons JL, Dianov GL, Nicholson B, Kessler BM (2011) Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem Biol 18(11):1401–1412. https://doi.org/10.1016/j.chembiol.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  46. Hershko A, Ciechanover A, Heller H, Haas AL, Rose IA (1980) Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc Natl Acad Sci USA 77(4):1783–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ungermannova D, Parker SJ, Nasveschuk CG, Chapnick DA, Phillips AJ, Kuchta RD, Liu X (2012) Identification and mechanistic studies of a novel ubiquitin E1 inhibitor. J Biomol Screen 17(4):421–434. https://doi.org/10.1177/1087057111433843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M (2013) Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23. https://doi.org/10.1007/s12035-012-8344-z

    Article  CAS  PubMed  Google Scholar 

  49. Ramanathan M, Hassanain M, Levitt M, Seth A, Tolman JS, Fried VA, Ingoglia NA (1999) Oxidative stress increases ubiquitin–protein conjugates in synaptosomes. NeuroReport 10(18):3797–3802

    Article  CAS  PubMed  Google Scholar 

  50. Lefaki M, Papaevgeniou N, Chondrogianni N (2017) Redox regulation of proteasome function. Redox Biol 13:452–458. https://doi.org/10.1016/j.redox.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iwabuchi M, Sheng H, Thompson JW, Wang L, Dubois LG, Gooden D, Moseley M, Paschen W, Yang W (2014) Characterization of the ubiquitin-modified proteome regulated by transient forebrain ischemia. J Cereb Blood Flow Metab 34(3):425–432. https://doi.org/10.1038/jcbfm.2013.210

    Article  CAS  PubMed  Google Scholar 

  52. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96(18):10403–10408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6(3):231–242. https://doi.org/10.1038/nn1013

    Article  CAS  PubMed  Google Scholar 

  54. Aiken CT, Kaake RM, Wang X, Huang L (2011) Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteom 10(5):R110 006924. https://doi.org/10.1074/mcp.M110.006924

    Article  Google Scholar 

  55. Farout L, Mary J, Vinh J, Szweda LI, Friguet B (2006) Inactivation of the proteasome by 4-hydroxy-2-nonenal is site specific and dependant on 20S proteasome subtypes. Arch Biochem Biophys 453(1):135–142. https://doi.org/10.1016/j.abb.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  56. Ishii T, Sakurai T, Usami H, Uchida K (2005) Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26 S proteasome. Biochemistry 44(42):13893–13901. https://doi.org/10.1021/bi051336u

    Article  CAS  PubMed  Google Scholar 

  57. Ekkebus R, van Kasteren SI, Kulathu Y, Scholten A, Berlin I, Geurink PP, de Jong A, Goerdayal S, Neefjes J, Heck AJ, Komander D, Ovaa H (2013) On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J Am Chem Soc 135(8):2867–2870. https://doi.org/10.1021/ja309802n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hata R, Maeda K, Hermann D, Mies G, Hossmann KA (2000) Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20(2):306–315

    Article  CAS  PubMed  Google Scholar 

  59. Folbergrova J, Zhao Q, Katsura K, Siesjo BK (1995) N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc Natl Acad Sci USA 92(11):5057–5061. https://doi.org/10.1073/pnas.92.11.5057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kisselev AF, Goldberg AL (2005) Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol 398:364–378. https://doi.org/10.1016/S0076-6879(05)98030-0

    Article  CAS  PubMed  Google Scholar 

  61. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83(3–4):301–310

    Article  CAS  PubMed  Google Scholar 

  62. Kamikubo T, Hayashi T (1996) Changes in proteasome activity following transient ischemia. Neurochem Int 28(2):209–212

    Article  CAS  PubMed  Google Scholar 

  63. Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, Wang G, Chen Z (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9(9):1321–1333. https://doi.org/10.4161/auto.25132

    Article  CAS  PubMed  Google Scholar 

  64. Liu C, Gao Y, Barrett J, Hu B (2010) Autophagy and protein aggregation after brain ischemia. J Neurochem 115(1):68–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tian F, Deguchi K, Yamashita T, Ohta Y, Morimoto N, Shang J, Zhang X, Liu N, Ikeda Y, Matsuura T, Abe K (2010) In vivo imaging of autophagy in a mouse stroke model. Autophagy 6(8):1107–1114. https://doi.org/10.4161/auto.6.8.13427

    Article  PubMed  Google Scholar 

  66. Liu X, Yamashita T, Shang J, Shi X, Morihara R, Huang Y, Sato K, Takemoto M, Hishikawa N, Ohta Y, Abe K (2018) Molecular switching from ubiquitin-proteasome to autophagy pathways in mice stroke model. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X18810617

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bond U, Schlesinger MJ (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Mol Cell Biol 5(5):949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaneko M, Iwase I, Yamasaki Y, Takai T, Wu Y, Kanemoto S, Matsuhisa K, Asada R, Okuma Y, Watanabe T, Imaizumi K, Nomura Y (2016) Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation. Sci Rep 6:30955. https://doi.org/10.1038/srep30955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hu BR, Wieloch T (1993) Stress-induced inhibition of protein synthesis initiation: modulation of initiation factor 2 and guanine nucleotide exchange factor activities following transient cerebral ischemia in the rat. J Neurosci 13(5):1830–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mengesdorf T, Proud CG, Mies G, Paschen W (2002) Mechanisms underlying suppression of protein synthesis induced by transient focal cerebral ischemia in mouse brain. Exp Neurol 177(2):538–546

    Article  CAS  PubMed  Google Scholar 

  71. Zhang F, Liu CL, Hu BR (2006) Irreversible aggregation of protein synthesis machinery after focal brain ischemia. J Neurochem 98(1):102–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kulathu Y, Garcia FJ, Mevissen TE, Busch M, Arnaudo N, Carroll KS, Barford D, Komander D (2013) Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat Commun 4:1569. https://doi.org/10.1038/ncomms2567

    Article  CAS  PubMed  Google Scholar 

  73. Kumar R, Jangir DK, Verma G, Shekhar S, Hanpude P, Kumar S, Kumari R, Singh N, Sarovar Bhavesh N, Ranjan Jana N, Kanti Maiti T (2017) S-nitrosylation of UCHL1 induces its structural instability and promotes alpha-synuclein aggregation. Sci Rep 7:44558. https://doi.org/10.1038/srep44558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Foster MW, Forrester MT, Stamler JS (2009) A protein microarray-based analysis of S-nitrosylation. Proc Natl Acad Sci USA 106(45):18948–18953. https://doi.org/10.1073/pnas.0900729106

    Article  PubMed  PubMed Central  Google Scholar 

  75. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10(8):550–563. https://doi.org/10.1038/nrm2731

    Article  CAS  PubMed  Google Scholar 

  76. Lackovic J, Howitt J, Callaway JK, Silke J, Bartlett P, Tan SS (2012) Differential regulation of Nedd4 ubiquitin ligases and their adaptor protein Ndfip1 in a rat model of ischemic stroke. Exp Neurol 235(1):326–335. https://doi.org/10.1016/j.expneurol.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  77. Tolbert BS, Tajc SG, Webb H, Snyder J, Nielsen JE, Miller BL, Basavappa R (2005) The active site cysteine of ubiquitin-conjugating enzymes has a significantly elevated pKa: functional implications. Biochemistry 44(50):16385–16391. https://doi.org/10.1021/bi0514459

    Article  CAS  PubMed  Google Scholar 

  78. Cheng L, Watt R, Piper PW (1994) Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae). Mol Gen Genet 243(3):358–362

    Article  CAS  PubMed  Google Scholar 

  79. Kim MN, Choi J, Ryu HW (1853) Ryu KY (2015) Disruption of polyubiquitin gene Ubc leads to attenuated resistance against arsenite-induced toxicity in mouse embryonic fibroblasts. Biochim Biophys Acta 5:996–1009. https://doi.org/10.1016/j.bbamcr.2015.02.010

    Article  CAS  Google Scholar 

  80. Min JW, Lu L, Freeling JL, Martin DS, Wang H (2017) USP14 inhibitor attenuates cerebral ischemia/reperfusion-induced neuronal injury in mice. J Neurochem 140(5):826–833. https://doi.org/10.1111/jnc.13941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu H, Povysheva N, Rose ME, Mi Z, Banton JS, Li W, Chen F, Reay DP, Barrionuevo G, Zhang F, Graham SH (2019) Role of UCHL1 in axonal injury and functional recovery after cerebral ischemia. Proc Natl Acad Sci USA 116(10):4643–4650. https://doi.org/10.1073/pnas.1821282116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu H, Li W, Ahmad M, Miller TM, Rose ME, Poloyac SM, Uechi G, Balasubramani M, Hickey RW, Graham SH (2011) Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury. Neurobiol Dis 41(2):318–328. https://doi.org/10.1016/j.nbd.2010.09.020

    Article  CAS  PubMed  Google Scholar 

  83. Flick K, Ouni I, Wohlschlegel JA, Capati C, McDonald WH, Yates JR, Kaiser P (2004) Proteolysis-independent regulation of the transcription factor Met4 by a single Lys 48-linked ubiquitin chain. Nat Cell Biol 6(7):634–641. https://doi.org/10.1038/ncb1143

    Article  CAS  PubMed  Google Scholar 

  84. Tyrrell A, Flick K, Kleiger G, Zhang H, Deshaies RJ, Kaiser P (2010) Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins. Proc Natl Acad Sci USA 107(46):19796–19801. https://doi.org/10.1073/pnas.1010648107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Diego Santisteban Vargas for technical assistance with ubiquitin-AMC experiments.

Funding

This study was supported by National Institute of Health (NIH) grants R01-NS109588 to KH, R01-NS34179 to CI, and R01-NS067078 to PZ, as well as a post-doctoral research grant from the Deutsche Forschungsgemeinschaft (KA2279/4-1) to TK. KH is the Finbar and Marianne Kenny Research Scholar in Neurology at Weill Cornell Medicine. Support from the Feil Family Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

TK, LQ, PZ, and KH conducted brain slice and neuron experiments and performed data analysis; CP, VP, and KH performed MCAO experiments, associated histology and data analysis; SPS contributed to DUB activity experiments; SS aided with proteasome experiments; IB, VP, RRS, and SPS contributed to Western blotting experiments; PZ, CI, and KH provided funding; KH and CI supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Karin Hochrainer.

Ethics declarations

Conflict of interest

CI is on the Scientific Advisory Board of Broadview Ventures. The other authors declare that they have no competing interests.

Ethics approval

All procedures involving mice were approved by the Weill Cornell Medicine Institutional Animal Care and Use Committee (IACUC) and were executed according to IACUC, NIH, and ARRIVE guidelines (https://www.nc3rs.org/ARRIVE).

Consent for publication

All authors consent to this submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahles, T., Poon, C., Qian, L. et al. Elevated post-ischemic ubiquitination results from suppression of deubiquitinase activity and not proteasome inhibition. Cell. Mol. Life Sci. 78, 2169–2183 (2021). https://doi.org/10.1007/s00018-020-03625-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03625-5

Keywords

Navigation