Skip to main content

Advertisement

Log in

Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Homeostatic signaling systems are fundamental forms of biological regulation that maintain stable functionality in a changing environment. In the nervous system, synapses are crucial substrates for homeostatic modulation, serving to establish, maintain, and modify the balance of excitation and inhibition. Synapses must be sufficiently flexible to enable the plasticity required for learning and memory but also endowed with the stability to last a lifetime. In response to the processes of development, growth, remodeling, aging, and disease that challenge synapses, latent forms of adaptive plasticity become activated to maintain synaptic stability. In recent years, new insights into the homeostatic control of synaptic function have been achieved using the powerful Drosophila neuromuscular junction (NMJ). This review will focus on work over the past 10 years that has illuminated the cellular and molecular mechanisms of five homeostats that operate at the fly NMJ. These homeostats adapt to loss of postsynaptic neurotransmitter receptor functionality, glutamate imbalance, axonal injury, as well as aberrant synaptic growth and target innervation. These diverse homeostats work independently yet can be simultaneously expressed to balance neurotransmission. Growing evidence from this model glutamatergic synapse suggests these ancient homeostatic signaling systems emerged early in evolution and are fundamental forms of plasticity that also function to stabilize mammalian cholinergic NMJs and glutamatergic central synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wondolowski J, Dickman D (2013) Emerging links between homeostatic synaptic plasticity and neurological disease. Front Cell Neurosci 7:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ramocki MB, Zoghbi HY (2008) Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature 455:912–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frere S, Slutsky I (2018) Alzheimer’s disease: from firing instability to homeostasis network collapse. Neuron 97:32–58

    Article  CAS  PubMed  Google Scholar 

  4. Jang S, Chung HJ (2016) Emerging link between Alzheimer’s disease and homeostatic synaptic plasticity. Neural Plast 2016:7969272

    Article  PubMed  PubMed Central  Google Scholar 

  5. Harris KP, Littleton JT (2015) Transmission, development, and plasticity of synapses. Genetics 201:345–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rajendra TK, Gonsalvez GB, Walker MP, Shpargel KB, Salz HK, Matera AG (2007) A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle. J Cell Biol 176:831–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Watson MR, Lagow RD, Xu K, Zhang B, Bonini NM (2008) A Drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem 283:24972–24981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Sea V (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frank CA, James TD, Müller M (2020) Homeostatic control of Drosophila neuromuscular junction function. Synapse 74:e22133

    Article  CAS  PubMed  Google Scholar 

  10. Petersen SA, Fetter RD, Noordermeer JN, Goodman CS, DiAntonio A (1997) Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release. Neuron 19(6):1237–1248

    Article  CAS  PubMed  Google Scholar 

  11. Orr BO, Hauswirth AG, Celona B, Fetter RD, Zunino G, Kvon EZ, Zhu Y, Pennacchio LA, Black BL, Davis GW (2020) Presynaptic homeostasis opposes disease progression in mouse models of ALS-like degeneration: evidence for homeostatic neuroprotection. Neuron S0896–6273:30278–30276

    Google Scholar 

  12. Wang X, McIntosh JM, Rich MM (2018) Muscle nicotinic acetylcholine receptors may mediate trans-synaptic signaling at the mouse neuromuscular junction. J Neurosci 38:1725–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang X, Pinter MJ, Rich MM (2016) Reversible recruitment of a homeostatic reserve pool of synaptic vesicles underlies rapid homeostatic plasticity of quantal content. J Neurosci 36(3):828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cull-Candy SG, Miledi R, Trautmann A, Uchitel OD (1980) On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates. J Physiol 299:621–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Plomp JJ, Th G, Kempen HV, Molenaar PC (1992) Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in aplha-bungarotoxin-treated rats. J Physiol 458:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Delvendahl I, Kita K, Müller M (2019) Rapid and sustained homeostatic control of presynaptic exocytosis at a central synapse. PNAS 116:23783–23789

    Article  CAS  PubMed  Google Scholar 

  17. DiAntonio A (2006) Glutamate receptors at the Drosophila neuromuscular junction. Intl Rev Neurobiol 75:165–179

    Article  CAS  Google Scholar 

  18. Qin G, Schwarz T, Kittel RJ, Schmid A, Rasse TM, Kappei D, Ponimaskin E, Heckmann M, Sigrist SJ (2005) Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J Neurosci 25(12):3209–3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. DiAntonio A, Petersen SA, Heckmann M, Goodman CS (1999) Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. J Neurosci 19(8):3023–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han TH, Dharkar P, Mayer ML, Serpe M (2015) Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors. Proc Natl Acad Sci USA 112(19):6182–6187

    Article  CAS  PubMed  Google Scholar 

  21. Delvendahl I, Muller M (2019) Homeostatic plasticity-a presynaptic perspective. Curr Opin Neurobiol 54:155–162

    Article  CAS  PubMed  Google Scholar 

  22. Frank CA (2013) Homeostatic plasticity at the Drosophila neuromuscular junction. Neuropharmacology 78:63–74

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dickman DK, Davis GW (2009) The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326(5956):1127–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Muller M, Pym EC, Tong A, Davis GW (2011) Rab3-GAP controls the progression of synaptic homeostasis at a late stage of vesicle release. Neuron 69(4):749–762

    Article  PubMed  PubMed Central  Google Scholar 

  25. Muller M, Davis GW (2012) Transsynaptic control of presynaptic Ca(2)(+) influx achieves homeostatic potentiation of neurotransmitter release. Curr Biol 22(12):1102–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weyhersmuller A, Hallermann S, Wagner N, Eilers J (2011) Rapid active zone remodeling during synaptic plasticity. J Neurosci 31(16):6041–6052

    Article  PubMed  PubMed Central  Google Scholar 

  27. Orr BO, Fetter RD, Davis GW (2017) Retrograde semaphorin-plexin signalling drives 849 homeostatic synaptic plasticity. Nature 550:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang T, Hauswirth AG, Tong A, Dickman DK, Davis GW (2014) Endostatin is a trans-synaptic signal for homeostatic synaptic plasticity. Neuron 83(3):616–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haghighi AP, McCabe BD, Fetter RD, Palmer JE, Hom S, Goodman CS (2003) Retrograde control of synaptic transmission by postsynaptic CaMKII at the Drosophila neuromuscular junction. Neuron 39(2):255–267

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Goel P, Chen C, Angajala V, Chen X, Dickman D (2018) Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation. eLife 7:e34338

    Article  PubMed  PubMed Central  Google Scholar 

  31. Newman ZL, Hoagland A, Aghi K, Worden K, Levy SL, Son JH, Lee LP, Isacoff EY (2017) Input-specific plasticity and homeostasis at the Drosophila larval neuromuscular junction. Neuron 93(6):1388–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goel P, Li X, Dickman D (2017) Disparate postsynaptic induction mechanisms ultimately converge to drive the retrograde enhancement of presynaptic efficacy. Cell Rep 21(9):2339–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kauwe G, Tsurudome K, Penney J, Mori M, Gray L, Calderon MR, Elazouzzi F, Chicoine N, Sonenberg N, Haghighi AP (2016) Acute fasting regulates retrograde synaptic enhancement through a 4E-BP-dependent mechanism. Neuron 92(6):1204–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Penney J, Tsurudome K, Liao EH, Elazzouzi F, Livingstone M, Gonzalez M, Sonenberg N, Haghighi AP (2012) TOR is required for the retrograde regulation of synaptic homeostasis at the Drosophila neuromuscular junction. Neuron 74(1):166–178

    Article  CAS  PubMed  Google Scholar 

  35. Penney J, Tsurudome K, Liao EH, Kauwe G, Gray L, Yanagiya A, Calderon MR, Sonenberg N, Haghighi AP (2016) LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nat Commun 7:12188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bohme MA, McCarthy AW, Grasskamp AT, Beuschel CB, Goel P, Jusyte B, Laber D, Huang S, Rey U, Petzold AG, Lehmann M, Goettfert F, Haghighi P, Hell SW, Owald D, Dickman D, Sigrist SJ, Walter AM (2019) Rapid active zone remodeling consolidates presynaptic potentiation. Nat Commun 10:1085

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen X, Dickman D (2017) Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations. PLoS Genet 13(12):e1007117

    Article  PubMed  PubMed Central  Google Scholar 

  38. Frank CA, Kennedy MJ, Goold CP, Marek KW, Davis GW (2006) Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis. Neuron 52(4):663–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hauswirth AG, Ford KJ, Wang T, Fetter RD, Tong A, Davis GW (2018) A postsynaptic PI3K-cII dependent signaling controller for presynaptic homeostatic plasticity. eLife 7:e31535

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kikuma K, Li X, Perry S, Li Q, Goel P, Chen C, Kim D, Stavropoulos N, Dickman D (2019) Cul3 and insomniac are required for rapid ubiquitination of postsynaptic targets and retrograde homeostatic signaling. Nat Commun 10:2998

    Article  PubMed  PubMed Central  Google Scholar 

  41. McGourty CA, Akopian D, Walsh C, Gorur A, Werner A, Schekman R, Bautista D, Rape M (2016) Regulation of the CUL3 ubiquitin ligase by a calcium-dependent co-adaptor. Cell 167:525–538

    Article  CAS  PubMed  Google Scholar 

  42. Wang T, Jones RT, Whippen JM, Davis GW (2016) alpha2delta-3 is required for rapid transsynaptic homeostatic signaling. Cell Rep 16:2875–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bruckner JJ, Zhan H, Gratz SJ, Rao M, Ukken F, Zilberg G, O’Connor-Giles KM (2017) Fife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release. J Cell Biol 216:231–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muller M, Liu KS, Sigrist SJ, Davis GW (2011) RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool. J Neurosci 32(47):16574–16585

    Article  Google Scholar 

  45. Muller M, Genc O, Davis GW (2015) RIM-binding protein links synaptic homeostasis to the stabilization and replenishment of high release probability vesicles. Neuron 85(5):1056–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kiragasi B, Wondolowski J, Li Y, Dickman DK (2017) A presynaptic glutamate receptor subunit confers robustness to neurotransmission and homeostatic potentiation. Cell Rep 19(13):2694–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kiragasi B, Goel P, Perry S, Han Y, Li X, Dickman D (2020) The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation. PNAS 117:25830–25839

    Article  CAS  PubMed  Google Scholar 

  48. Goel P, Dufour Bergeron D, Bohme MA, Nunnelly L, Lehmann M, Buser C, Walter AM, Sigrist SJ, Dickman D (2019) Homeostatic scaling of active zone scaffolds maintains global synaptic strength. J Cell Biol 218(5):1706–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gratz SJ, Goel P, Bruckner JJ, Hernandez RX, Khateeb K, Macleod G, Dickman D, O’Connor-Giles KM (2019) Endogenous tagging reveals differential regulation of Ca2+ channels at single AZs during presynaptic homeostatic potentiation and depression. J Neurosci 39:3018–3068

    Google Scholar 

  50. Wentzel C, Delvendahl I, Sydlik S, Georgiev O, Muller M (2018) Dysbindin links presynaptic proteasome function to homeostatic recruitment of low release probability vesicles. Nat Commun 9:267

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li X, Goel P, Wondolowski J, Paluch J, Dickman D (2018) A glutamate homeostat controls the presynaptic inhibition of neurotransmitter release. Cell Rep 23(6):1716–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mrestani A, Kollmannsberger P, Pauli M, Repp F, Kittel RJ, Eilers J, Doose S, Sauer M, Siren A, Heckmann M, Paul MM (2020) Active zone compaction in presynaptic homeostatic potentiation. BioRxiv 1:802843

    Google Scholar 

  53. Bohme MA, Beis C, Reddy-Alla S, Reynolds E, Mampell MM, Grasskamp AT, Lutzkendorf J, Bergeron DD, Driller JH, Babikir H, Gottfert F, Robinson IM, O’Kane CJ, Hell SW, Wahl MC, Stelzl U, Loll B, Walter AM, Sigrist SJ (2016) Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca(2+) channel-vesicle coupling. Nat Neurosci 19(10):1311–1320

    Article  PubMed  Google Scholar 

  54. Matkovic T, Siebert M, Knoche E, Depner H, Mertel S, Owald D, Schmidt M, Thomas U, Sickmann A, Kamin D, Hell SW, Burger J, Hollmann C, Mielke T, Wichmann C, Sigrist SJ (2013) The Bruchpilot cytomatrix determines the size of the readily releasable pool of synaptic vesicles. J Cell Biol 202(4):667–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vukoja A, Rey U, Petzoldt AG, Ott C, Vollweiter D, Quentin C, Puchkov D, Reynolds E, Lehmann M, Hohensee S, Rosa S, Lipowsky R, Sigrist SJ, Haucke V (2018) Presynaptic biogenesis requires axonal transport of lysosome-related vesicles. Neuron 99(6):1216–1232

    Article  CAS  PubMed  Google Scholar 

  56. Atwood HL, Govind CK, Wu CF (1993) Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae. J Neurobiol 24:1008–1024

    Article  CAS  PubMed  Google Scholar 

  57. Lnenicka GA, Keshishian H (2000) Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. J Neurobiol 43:186–197

    Article  CAS  PubMed  Google Scholar 

  58. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15

    Article  CAS  PubMed  Google Scholar 

  59. Aponte-Santiago NA, Ormerod KG, Akbergenova Y, Littleton JT (2020) Synaptic plasticity induced by differential manipulation of tonic and phasic motoneurons in Drosophila. J Neurosci 40:6270–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Perez-Moreno JJ, O’Kane CJ (2018) GAL4 drivers specific for type Ib and type is motor neurons in Drosophila. G3 (Bethesda) 9:453–4

    Article  Google Scholar 

  61. Wang Y, Lobb-Rabe M, Ashley J, Carrillo RA (2020) Structural and functional synaptic plasticity induced by convergent synapse loss requires co-innervation in the Drosophila neuromuscular circuit. bioRxiv

  62. Genc O, Davis GW (2019) Target-wide induction and synapse type-specific robustness of presynaptic homeostasis. Curr Biol CB 29(22):3863–3873

    Article  CAS  PubMed  Google Scholar 

  63. Karunanithi S, Marin L, Wong K, Atwood HL (2002) Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses. J Neurosci 22:10267–10276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frank CA, Pielage J, Davis GW (2009) A presynaptic homeostatic signaling system composed of the Eph receptor, ephexin, Cdc42, and CaV2.1 calcium channels. Neuron 61(4):556–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marie B, Pym E, Bergquist S, Davis GW (2010) Synaptic homeostasis is consolidated by the cell fate gene gooseberry, a Drosophila pax3/7 homolog. J Neurosci 30(24):8071–8082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Spring AM, Brusich DJ, Frank CA (2016) C-terminal Src kinase gates homeostatic synaptic plasticity and regulates fasciclin II expression at the Drosophila neuromuscular junction. PLoS Genet 12(2):e1005886

    Article  PubMed  PubMed Central  Google Scholar 

  67. Koles K, Messelaar EM, Feiger Z, Yu CJ, Frank CA, Rodal AA (2015) The EHD protein Past1 controls postsynaptic membrane elaboration and synaptic function. Mol Biol Cell 26:3275–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dickman DK, Horne JA, Meinertzhagen IA, Schwarz TL (2005) A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell 123(3):521–533

    Article  CAS  PubMed  Google Scholar 

  69. Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, Davis GW (2004) Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 43(2):207–219

    Article  CAS  PubMed  Google Scholar 

  70. Verstreken P, Kjaerulff O, Lloyd TE, Atkinson R, Zhou Y, Meinertzhagen IA, Bellen HJ (2002) Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell 109(1):101–112

    Article  CAS  PubMed  Google Scholar 

  71. Daniels RW, Collins CA, Gelfand MV, Dant J, Brooks ES, Krantz DE, DiAntonio A (2004) Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 24(46):10466–10474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gavino MA, Ford KJ, Archila S, Davis GW (2015) Homeostatic synaptic depression is achieved through a regulated decrease in presynaptic calcium channel abundance. eLife 4:e05473

    Article  PubMed Central  Google Scholar 

  73. Chen CK, Bregere C, Paluch J, Lu JF, Dickman DK, Chang KT (2014) Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase. Nat Commun 5:4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8:935–947

    Article  CAS  PubMed  Google Scholar 

  75. Daniels RW, Miller BR, DiAntonio A (2011) Increased vesicular glutamate transporter expression causes excitotoxic neurodegeneration. Neurobiol Dis 41(2):415–420

    Article  CAS  PubMed  Google Scholar 

  76. Augustin H, Grosjean Y, Chen K, Sheng Q, Featherstone DE (2007) Nonvesicular release of glutamate by glial xCT transporters suppresses glutamate receptor clustering in vivo. J Neurosci 27:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rival T, Soustelle L, Cattaert D, Strambi C, Iche M, Birman S (2006) Physiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junction. J Neurobiol 66(10):1061–1074

    Article  CAS  PubMed  Google Scholar 

  78. Bogdanik L, Mohrmann R, Ramaekers A, Bockaert J, Grau Y, Broadie K, Parmentier ML (2004) The Drosophila metabotropic glutamate receptor DmGluRA regulates activity-dependent synaptic facilitation and fine synaptic morphology. J Neurosci 24:9105–9106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perry S, Goel P, Tran NL, Pinales C, Buser C, Miller DL, Ganetzky B, Dickman D (2020) Developmental arrest of Drosophila larvae elicits presynaptic depression and enables prolonged studies of neurodegeneration. Development 147(10):dev186312

    Article  CAS  PubMed  Google Scholar 

  80. Goel P, Khan M, Howard S, Kim G, Kiragasi B, Kikuma K, Dickman D (2019) A screen for synaptic growth mutants reveals mechanisms that stabilize synaptic strength. J Neurosci 39:4051–4065

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang M, Chen PY, Wang CH, Lai TT, Tsai PI, Cheng YJ, Kao HH, Chien CT (2016) Dbo/Henji modulates synaptic dPAK to gate glutamate receptor abundance and postsynaptic response. PLoS Genet 12(10):e1006362

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gerdts J, Summers DW, Milbrandt J, DiAntonio A (2016) Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron 89(3):449–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Freeman MR (2014) Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol 27:224–231

    Article  CAS  PubMed  Google Scholar 

  84. Collins CA, DiAntonio A (2007) Synaptic development: insights from Drosophila. Curr Opin Neurobiol 17:35–42

    Article  CAS  PubMed  Google Scholar 

  85. Brace EJ, DiAntonio A (2017) Models of axon regeneration in Drosophila. Exp Neurol 287(Pt 3):310–317

    Article  CAS  PubMed  Google Scholar 

  86. Adib EA, Smithson LJ, Collins CA (2018) An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 53:110–119

    Article  Google Scholar 

  87. Lee WC, Yoshihara M, Littleton JT (2004) Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. PNAS 101:3224–3229

    Article  CAS  PubMed  Google Scholar 

  88. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  89. Ye Y, Fortini ME (1999) Apoptotic activities of wild-type and Alzheimer’s disease-related mutant presenilins in Drosophila melanogaster. J Cell Biol 146:1351–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Greeve I, Kretzchmar D, Tschape JA, Beyn A, Brellinger C, Schweizer M, Nitsch RM, Rei-fegerste R (2004) Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J Neurosci 24:3899–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Iijima K, Liu HP, Chang AS, Hearn SA, Kon- solaki M, Zhong Y (2004) Dissecting the pathological effects of human A. PNAS 101:6623–6628

    Article  CAS  PubMed  Google Scholar 

  92. Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398

    Article  CAS  PubMed  Google Scholar 

  93. Chen L, Feany MB (2005) Alpha-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8:657–663

    Article  CAS  PubMed  Google Scholar 

  94. Drozd M, Bardoni B, Capovilla M (2018) Modeling Fragile X syndrome in Drosophila. Front Mol Neurosci 11:124

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhang K, Coyne AN, Lloyd TE (2018) Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Res 1693(Pt A):109–120

    Article  CAS  PubMed  Google Scholar 

  96. Perry S, Han Y, Das A, Dickman DK (2017) Homeostatic plasticity can be induced and expressed to restore synaptic strength at neuromuscular junctions undergoing ALS-related degeneration. Hum Mol Genet 26(21):4153–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Praveen K, Wen Y, Gray KM, Noto JJ, Patlolla AR, Van Duyne GD, Matera AG (2014) SMA-causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila. PLoS Genet 10:e1004489

    Article  PubMed  PubMed Central  Google Scholar 

  98. Imlach WL, Beck ES, Choi BJ, Lotti F, Pellizzoni L, McCabe BD (2012) SMN is required for sensory-motor circuit function in Drosophila. Cell 151(2):427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA (2010) Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 191(1):211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Collins CA, Wairkar YP, Johnson SL, DiAntonio A (2006) Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51(1):57–69

    Article  CAS  PubMed  Google Scholar 

  101. Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS (2000) Highwire regulates synaptic growth in Drosophila. Neuron 26:313–329

    Article  CAS  PubMed  Google Scholar 

  102. Goel P, Dickman D (2018) Distinct homeostatic modulations stabilize reduced postsynaptic receptivity in response to presynaptic DLK signaling. Nat Commun 9(1):1856

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xiong X, Hao Y, Sun K, Li J, Li X, Mishra B, Soppina P, Wu C, Hume RI, Collins CA (2012) The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLoS Biol 10(12):e1001440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zang S, Ali YO, Ruan K, Zhaia RG (2013) Nicotinamide mononucleotide adenylyltransferase maintains active zone structure by stabilizing Bruchpilot. EMBO Rep 14:87–94

    Article  CAS  PubMed  Google Scholar 

  105. Russo A, Goel P, Brace EJ, Buser C, Dickman D, DiAntonio A (2019) The E3 ligase Highwire promotes synaptic transmission by targeting the NAD-synthesizing enzyme dNmnat. EMBO Rep 20(3):e46975

    Article  PubMed  PubMed Central  Google Scholar 

  106. Miskiewicz K, Jose LE, BentoAbreu A, Fislage M, Taes I, Kasprowicz J, Swerts J, Sigrist S, Versees W, Robberecht W, Verstreken P (2011) ELP3 controls active zone morphology by acetylating the ELKS family member Bruchpilot. Neuron 72:776–788

    Article  CAS  PubMed  Google Scholar 

  107. Miskiewicz K, Jose LE, Yeshaw WM, Valadas JS, Swerts J, Munck S, Feiguin F, Dermaut B, Verstreken P (2014) HDAC6 is a Bruchpilot deacetylase that facilitates neurotransmitter release. Cell Rep 8:94102

    Article  Google Scholar 

  108. Perry S, Kiragasi B, Dickman D, Ray A (2017) The role of histone deacetylase 6 in synaptic plasticity and memory. Cell Rep 18:1337–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Burghes AH, Beattie CE (2009) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10:597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Traynor BJ (2011) hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Miller DL, Ballard SL, Ganetzky B (2012) Analysis of synaptic growth and function in Drosophila with an extended larval stage. J Neurosci 32:13776–13786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Duncan JE, Lytle NK, Zuniga A, Goldstein LSB (2013) The microtubule regulatory protein stathmin is required to maintain the integrity of axonal microtubules in Drosophila. PLoS ONE 8:e68324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Graf ER, Heerssen HM, Wright CM, Davis GW, DiAntonio A (2011) Stathmin is required for stability of the Drosophila neuromuscular junction. J Neurosci 31:15026–15034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Melamed Z, López-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, Freyermuth F, McMahon MA, Beccari MS, Artates JW, Ohkubo T, Rodriguez M, Lin N, Wu D, Bennett CF, Rigo F, Da Cruz S, Ravits J, Lagier-Tourenne C, Cleveland DW (2019) Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci 22:180–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cohen-Cory S (2002) The developing synapse: construction and modulation of synaptic structures and circuits. Science 298:770–776

    Article  CAS  PubMed  Google Scholar 

  116. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658

    Article  CAS  PubMed  Google Scholar 

  117. Riccomagno MM, Kolodkin AL (2015) Sculpting neural circuits by axon and dendrite pruning. Annu Rev Cell Dev Biol 31:779–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zito K, Parnas D, Fetter RD, Isacoff EY, Goodman CS (1999) Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron 22:719–729

    Article  CAS  PubMed  Google Scholar 

  119. Budnik V (1996) Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr Opin Neurobiol 6:858–867

    Article  CAS  PubMed  Google Scholar 

  120. Landgraf M, Bossing T, Technau GM, Bate M (1997) The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J Neurosci 17:9642–9655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Korkut C, Budnik V (2009) WNTs tune up the neuromuscular junction. Nat Rev Neurosci 10:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. McCabe BD, Marqués G, Haghighi AP, Fetter RD, Crotty ML, Haerry TE, Goodman CS, O’Connor MB (2003) The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39:241–254

    Article  CAS  PubMed  Google Scholar 

  123. Marqués G, Bao H, Haerry TE, Shimell MJ, Duchek P, Zhang B, O’Connor MB (2002) The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33:529–543

    Article  PubMed  Google Scholar 

  124. Vijayan V, Verstreken P (2017) Autophagy in the presynaptic compartment in health and disease. J Cell Biol 216:1895–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shen W, Ganetzky B (2010) Nibbling away at synaptic development. Autophagy 6:168–169

    Article  PubMed  PubMed Central  Google Scholar 

  126. Deshpande M, Rodal AA (2016) The crossroads of synaptic growth signaling, membrane traffic and neurological disease: insights from Drosophila. Traffic 17:87–101

    Article  CAS  PubMed  Google Scholar 

  127. Ho CH, Treisman JE (2020) Specific isoforms of the guanine-nucleotide exchange factor dPix couple neuromuscular synapse growth to muscle growth. Dev Cell 54(1):117–131

    Article  CAS  PubMed  Google Scholar 

  128. Davis GW, Goodman CS (1998) Genetic analysis of synaptic development and plasticity: homeostatic regulation of synaptic efficacy. Curr Opin Neurobiol 8:149–156

    Article  CAS  PubMed  Google Scholar 

  129. Menon KP, Carrillo RA, Zinn K (2013) Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol 2(5):647–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schuster CM, Davis GW, Fetter RD, Goodman CS (1996) Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron 17:655–667

    Article  CAS  PubMed  Google Scholar 

  131. Aberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhaes TR, Goodman CS (2002) wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33(4):545–558

    Article  CAS  PubMed  Google Scholar 

  132. Graf ER, Daniels RW, Burgess RW, Schwarz TL, DiAntonio A (2009) Rab3 dynamically controls protein composition at active zones. Neuron 64(5):663–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Keshishian H, Broadie K, Chiba A, Bate M (1996) The Drosophila neuromuscular junction: a model system for studying synaptic development and function. Ann Rev Neurosci 19:545–575

    Article  CAS  PubMed  Google Scholar 

  134. Davis GW, Goodman CS (1998) Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392:82–86

    Article  CAS  PubMed  Google Scholar 

  135. Koester HJ, Johnston D (2005) Target cell-dependent normalization of transmitter release at neocortical synapses. Science 308:863–866

    Article  CAS  PubMed  Google Scholar 

  136. Maccaferri G, Tóth K, McBain CJ (1998) Target-specific expression of presynaptic mossy fiber plasticity. Science 279:1368–1370

    Article  CAS  PubMed  Google Scholar 

  137. Scanziani M, Gahwiler BH, Charpak S (1998) Target cell-specific modulation of transmitter release at terminals from a single axon. PNAS 95:12004–12009

    Article  CAS  PubMed  Google Scholar 

  138. Goel P, Nishimura S, Chetlapalli K, Li X, Chen C, Dickman D (2020) Distinct target-specific mechanisms homeostatically stabilize transmission at pre- and post-synaptic compartments. Front Cell Neurosci 14:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hoang B, Chiba A (2001) Single-cell analysis of Drosophila larval neuromuscular synapses. Dev Biol 229:55–70

    Article  CAS  PubMed  Google Scholar 

  140. Lu Z, Chouhan AK, Borycz JA, Lu Z, Rossano AJ, Brain KL, Zhou Y, Meinertzhagen IA, Macleod GT (2016) High-probability neurotransmitter release sites represent an energy-efficient design. Curr Biol 26(19):2562–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kurdyak P, Atwood HL, Stewart BA, Wu CF (1994) Differential physiology and morphology of motor axons to ventral longitudinal muscles in larval Drosophila. J Comp Neurol 350:463–472

    Article  CAS  PubMed  Google Scholar 

  142. Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane J (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351

    Article  CAS  PubMed  Google Scholar 

  143. Ackerman SD, Perez-Catalan NA, Freeman MR, Doe CQ (2020) Astrocytes close a critical period of motor circuit plasticity. bioRxiv

  144. Lawrence JJ, McBain CJ (2003) Interneuron diversity series: containing the detonation—feedforward inhibition in the CA3 hippocampus. Trends Neurosci 26:631–640

    Article  CAS  PubMed  Google Scholar 

  145. Tripodi M, Evers JF, Mauss A, Bate M, Landgraf M (2008) Structural homeostasis: compensatory adjustments of dendritic arbor geometry in response to variations of synaptic input. PloS Biol 6:e260

    Article  PubMed  PubMed Central  Google Scholar 

  146. Giachello C, Baines R (2017) Regulation of motoneuron excitability and the setting of homeostatic limits. Curr Opin Neurobiol 43:1–6

    Article  CAS  PubMed  Google Scholar 

  147. Yuan Q, Xiang Y, Yan Z, Han C, Jan LY, Jan YN (2011) Light-induced structural and functional plasticity in Drosophila larval visual system. Science 333:1458–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Rei Y, Hiroshi K (2016) Structural and functional plasticity at the axon initial segment. Front Cell Neurosci 10:250

    Google Scholar 

  149. Wefelmeyer W, Puhl CJ, Burrone J (2016) Homeostatic plasticity of subcellular neuronal structures: from inputs to outputs. Trends Neurosci 39:656–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Burrone J, Murthy VN (2003) Synaptic gain control and homeostasis. Curr Opin Neurobiol 13(5):560–567

    Article  CAS  PubMed  Google Scholar 

  151. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3):422–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vitureira N, Goda Y (2013) The interplay between Hebbian and homeostatic synaptic plasticity. J Cell Biol 203:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hengen KB, Pacheco AT, McGregor JN, Van Hooser SD, Turrigiano GG (2016) Neuronal firing rate homeostasis is inhibited by sleep and promoted by wake. Cell 165:180–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL (2017) Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pacheco AT, Bottorff J, Turrigiano GG (2019) Sleep promotes downward firing rate homeostasis. bioRxiv

  156. Cary BA, Turrigiano GG (2019) Stability of cortical synapses across sleep and wake. bioRxiv

  157. de Vivo L, Bellesi M, Marshall W, Bushong EA, Ellisman MH, Tononi G, Cirelli C (2017) Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355:507–510

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes to Health to D.D. (NS091546 and NS111414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dion Dickman.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, P., Dickman, D. Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction. Cell. Mol. Life Sci. 78, 3159–3179 (2021). https://doi.org/10.1007/s00018-020-03732-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03732-3

Keywords

Navigation