Skip to main content

Advertisement

Log in

Breast cancer stem cells: mechanobiology reveals highly invasive cancer cell subpopulations

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cancer stem-like cells (CSCs) are a typically small subpopulation of highly tumorigenic cells that can self-renew, differentiate, drive tumor progression, and may mediate drug resistance and metastasis. Metastasis driving CSCs are expected to be highly invasive. To determine the relative invasiveness of CSCs, we isolate distinct subpopulations in the metastatic, MDA-MB-231 breast-cancer cell line, identified by the stem-cell markers aldehyde dehydrogenase (ALDH) and CD44. We determine CSC-subpopulation invasiveness levels using our rapid (2 h) mechanobiology-based assay. Specifically, invasive cells forcefully push and indent the surface of physiological–stiffness synthetic gels to cell-scale depths, where the percentage of indenting cells and their attained depths have previously provided clinically relevant predictions of the metastatic risk in different cancer types. We observe that the small (3.2%) CD44+ALDH+ cell-subpopulation indents more and attains significantly deeper depths (65% indenting to 6 ± 0.3 µm) relative to CD44+ALDH, CD44ALDH, CD44ALDH+ cells, and the whole-sample control (with 18–44% indenting cells reaching average depths of 4.4–5 µm). The CD44+ALDH+ similarly demonstrates twofold higher migratory capacity in Boyden chambers. The higher invasiveness of CD44+ALDH+ cells reveals their likely role in facilitating disease progression, providing prognostic markers for increased risk of recurrence and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CSCs:

Cancer stem-like cells

ALDH:

Aldehyde dehydrogenase

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

APS:

Ammonium persulfate

TEMED:

Tetramethylethylenediamine

ANOVA:

Analysis of variance

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Joensuu H, Gligorov J (2012) Adjuvant treatments for triple-negative breast cancers. Ann Oncol 23(Suppl 6):vi40–vi45. https://doi.org/10.1093/annonc/mds194

    Article  PubMed  Google Scholar 

  3. Gal N, Weihs D (2012) Intracellular mechanics and activity of breast cancer cells correlate with metastatic potential. Cell Biochem Biophys 63:199–209

    Article  CAS  Google Scholar 

  4. Massalha S, Weihs D (2017) Metastatic breast cancer cells adhere strongly on varying stiffness substrates, initially without adjusting their morphology. Biomech Model Mechanobiol 16:961–970. https://doi.org/10.1007/s10237-016-0864-4

    Article  PubMed  Google Scholar 

  5. Kristal-Muscal R, Dvir L, Weihs D (2013) Metastatic cancer cells tenaciously indent impenetrable, soft substrates. New J Phys 15:035022. https://doi.org/10.1088/1367-2630/15/3/035022

    Article  CAS  Google Scholar 

  6. Merkher Y, Horesh Y, Abramov Z et al (2020) Rapid cancer diagnosis and early prognosis of metastatic risk based on mechanical invasiveness of sampled cells. Ann Biomed Eng 48:2846–2858. https://doi.org/10.1007/s10439-020-02547-4

    Article  CAS  PubMed  Google Scholar 

  7. Dalerba P, Cho RW, Clarke MF (2007) Cancer Stem Cells: Models and Concepts. Annu Rev Med 58:267–284. https://doi.org/10.1146/annurev.med.58.062105.204854

    Article  CAS  PubMed  Google Scholar 

  8. Saeg F, Anbalagan M (2018) Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem cell Investig 5:39. https://doi.org/10.21037/sci.2018.10.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Velasco-Velázquez MA, Popov VM, Lisanti MP, Pestell RG (2011) The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol 179:2–11. https://doi.org/10.1016/j.ajpath.2011.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barenholz-Cohen T, Merkher Y, Haj J et al (2020) Lung mechanics modifications facilitating metastasis are mediated in part by breast cancer-derived extracellular vesicles. Int J Cancer 147:2924–2933. https://doi.org/10.1002/ijc.33229

    Article  CAS  PubMed  Google Scholar 

  11. de Beça FF, Caetano P, Gerhard R et al (2013) Cancer stem cells markers CD44, CD24 and ALDH1 in breast cancer special histological types. J Clin Pathol 66:187–191. https://doi.org/10.1136/jclinpath-2012-201169

    Article  CAS  PubMed  Google Scholar 

  12. Li W, Ma H, Zhang J et al (2017) Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep 7:13856. https://doi.org/10.1038/s41598-017-14364-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang H, Wang L, Song Y et al (2017) CD44+/CD24- phenotype predicts a poor prognosis in triple-negative breast cancer. Oncol Lett 14:5890–5898. https://doi.org/10.3892/ol.2017.6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci 100:3983–3988. https://doi.org/10.1073/pnas.0530291100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hurt EM, Kawasaki BT, Klarmann GJ et al (2008) CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98:756–765. https://doi.org/10.1038/sj.bjc.6604242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037. https://doi.org/10.1158/0008-5472.CAN-06-2030

    Article  CAS  PubMed  Google Scholar 

  17. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. https://doi.org/10.1038/nature05372

    Article  CAS  PubMed  Google Scholar 

  18. Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226. https://doi.org/10.1056/NEJMoa063994

    Article  CAS  PubMed  Google Scholar 

  19. Meyer MJ, Fleming JM, Ali MA et al (2009) Dynamic regulation of CD24 and the invasive, CD44posCD24negphenotype in breast cancer cell lines. Breast Cancer Res 11:R82. https://doi.org/10.1186/bcr2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meyer MJ, Fleming JM, Lin AF et al (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 70:4624–4633. https://doi.org/10.1158/0008-5472.CAN-09-3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vikram R, Chou WC, Hung SC, Shen CY (2020) Tumorigenic and metastatic role of CD44−/low/CD24−/low cells in luminal breast cancer. Cancers (Basel) 12:1239. https://doi.org/10.3390/cancers12051239

    Article  CAS  Google Scholar 

  22. Mylona E, Giannopoulou I, Fasomytakis E et al (2008) The clinicopathologic and prognostic significance of CD44+/CD24-/low and CD44-/CD24+ tumor cells in invasive breast carcinomas. Hum Pathol 39:1096–1102. https://doi.org/10.1016/j.humpath.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  23. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567. https://doi.org/10.1016/j.stem.2007.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68. https://doi.org/10.1186/bcr2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merkher Y, Weihs D (2017) Proximity of metastatic cells enhances their mechanobiological invasiveness. Ann Biomed Eng 45:1399–1406. https://doi.org/10.1007/s10439-017-1814-8

    Article  PubMed  Google Scholar 

  26. Merkher Y, Alvarez-Elizondo MB, Weihs D (2017) Taxol reduces synergistic, mechanobiological invasiveness of metastatic cells. Converg Sci Phys Oncol 3:044002. https://doi.org/10.1088/2057-1739/aa8c0b

    Article  CAS  Google Scholar 

  27. Alvarez-Elizondo MB, Merkher Y, Shleifer G et al (2021) Actin as a target to reduce cell invasiveness in initial stages of metastasis. Ann Biomed Eng 49:1342–1352. https://doi.org/10.1007/s10439-020-02679-7

    Article  PubMed  Google Scholar 

  28. Weihs D, Merkher Y (2019) A device and method for determining cell indention activity. Patent pending

  29. Kortam S, Merkher Y, Kramer A et al (2021) Rapid, quantitative prediction of tumor invasiveness in non-melanoma skin cancers using mechanobiology-based assay. Biomech Model Mechanobiol 20:1767–1774. https://doi.org/10.1007/s10237-021-01475-z

    Article  PubMed  Google Scholar 

  30. Alvarez-Elizondo MB, Weihs D (2017) Cell-gel mechanical interactions as an approach to rapidly and quantitatively reveal invasive subpopulations of metastatic cancer cells. Tissue Eng Part C Methods 23:180–187. https://doi.org/10.1089/ten.TEC.2016.0424

    Article  CAS  PubMed  Google Scholar 

  31. Dvir L, Nissim R, Alvarez-Elizondo MB, Weihs D (2015) Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells. New J Phys 17:043010. https://doi.org/10.1088/1367-2630/17/4/043010

    Article  CAS  Google Scholar 

  32. Alvarez-Elizondo MB, Rozen R, Weihs D (2018) Mechanobiology of metastatic cancer. In: Mechanobiology in Health and Disease. Academic Press, pp 449–494

  33. Ben-David Y, Weihs D (2021) Modeling force application configurations and morphologies required for cancer cell invasion. Biomech Model Mechanobiol 20:1187–1194. https://doi.org/10.1007/s10237-021-01441-9

    Article  PubMed  Google Scholar 

  34. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:R25. https://doi.org/10.1186/bcr1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alvarez-Elizondo MB, Li CW, Marom A et al (2020) Micropatterned topographies reveal measurable differences between cancer and benign cells. Med Eng Phys 75:5–12. https://doi.org/10.1016/j.medengphy.2019.11.004

    Article  PubMed  Google Scholar 

  36. Suman S, Das TP, Damodaran C (2013) Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells. Br J Cancer 109:2587–2596. https://doi.org/10.1038/bjc.2013.642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Buxboim A, Rajagopal K, Brown AEX, Discher DE (2010) How deeply cells feel: methods for thin gels. J Phys-Condensed Matter 22:194116. https://doi.org/10.1088/0953-8984/22/19/194116

    Article  CAS  Google Scholar 

  38. Sen S, Engler AJ, Discher DE (2009) Matrix strains induced by cells: computing how far cells can feel. Cell Mol Bioeng 2:39–48. https://doi.org/10.1007/s12195-009-0052-z

    Article  PubMed  Google Scholar 

  39. Ricardo S, Vieira AF, Gerhard R et al (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64:937–946. https://doi.org/10.1136/jcp.2011.090456

    Article  PubMed  Google Scholar 

  40. Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59. https://doi.org/10.1186/bcr1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Idowu MO, Kmieciak M, Dumur C et al (2012) CD44 +/CD24 -/low cancer stem/progenitor cells are more abundant in triple-negative invasive breast carcinoma phenotype and are associated with poor outcome. Hum Pathol 43:364–373. https://doi.org/10.1016/j.humpath.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  42. Ahmed MAH, Aleskandarany MA, Rakha EA et al (2012) A CD44−/CD24+ phenotype is a poor prognostic marker in early invasive breast cancer. Breast Cancer Res Treat 133:979–995. https://doi.org/10.1007/s10549-011-1865-8

    Article  CAS  PubMed  Google Scholar 

  43. Sun Q, Wang Y, Officer A et al (2022) Stem-like breast cancer cells in the activated state resist genetic stress via TGFBI-ZEB1. npj Breast Cancer 8:5. https://doi.org/10.1038/s41523-021-00375-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Croker AK, Goodale D, Chu J et al (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13:2236–2252. https://doi.org/10.1111/j.1582-4934.2008.00455.x

    Article  PubMed  Google Scholar 

  45. Wagoner Johnson A, Harley BA (2011) Mechanobiology of cell-cell and cell-matrix interactions. Springer, New York

    Book  Google Scholar 

  46. Mohammadalipour A, Burdick MM, Tees DFJ (2018) Deformability of breast cancer cells in correlation with surface markers and cell rolling. FASEB J 32:1806–1817. https://doi.org/10.1096/fj.201700762R

    Article  CAS  PubMed  Google Scholar 

  47. Lv J, Liu Y, Cheng F et al (2021) Cell softness regulates tumorigenicity and stemness of cancer cells. EMBO J 40:e106123. https://doi.org/10.15252/EMBJ.2020106123

    Article  CAS  PubMed  Google Scholar 

  48. Nogami T, Shien T, Tanaka T et al (2014) Expression of ALDH1 in axillary lymph node metastases is a prognostic factor of poor clinical outcome in breast cancer patients with 1–3 lymph node metastases. Breast Cancer 21:58–65. https://doi.org/10.1007/s12282-012-0350-5

    Article  PubMed  Google Scholar 

  49. Wiener GI, Kadosh D, Weihs D (2021) Mechanical interactions of invasive cancer cells through their substrate evolve from additive to synergistic. J Biomech 129:110759

    Article  Google Scholar 

  50. Jayatilaka H, Tyle P, Chen JJ et al (2017) Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat Commun 8:15584. https://doi.org/10.1038/ncomms15584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee YH, Morrison BL, Bottaro DP (2014) Synergistic signaling of tumor cell invasiveness by hepatocyte growth factor and hypoxia. J Biol Chem 289:20448–20461. https://doi.org/10.1074/jbc.M114.580597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo J, Liu C, Zhou X et al (2017) Conditioned medium from malignant breast cancer cells induces an EMT-like phenotype and an altered N-glycan profile in normal epithelial MCF10A cells. Int J Mol Sci 18:1528. https://doi.org/10.3390/ijms18081528

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the Israeli Ministry of Science and Technology (MOST) Medical Devices Program (Grant no. 3-17427), by the Samuel H. Born Fund for Biomedical Research, and by the Russel Berrie Nano Institute at the Technion-IIT.

Funding

The work was partially supported by the Israeli Ministry of Science and Technology (MOST) Medical Devices Program (Grant no. 3–17427), the Samuel H. Born Fund for Biomedical Research, and by the Russel Berrie Nano Institute at the Technion-IIT.

Author information

Authors and Affiliations

Authors

Contributions

MBA-E and DW contributed to the study conception and design, material preparation, data collection and analysis. The first draft of the manuscript was written by MBA-E and DW.

Corresponding author

Correspondence to Daphne Weihs.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 370 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Elizondo, M.B., Weihs, D. Breast cancer stem cells: mechanobiology reveals highly invasive cancer cell subpopulations. Cell. Mol. Life Sci. 79, 134 (2022). https://doi.org/10.1007/s00018-022-04181-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04181-w

Keywords

Navigation