Skip to main content
Log in

Boundedness of Generalized Riesz Transforms on Orlicz–Hardy Spaces Associated to Operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let \({\Phi}\) be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index \({p_\Phi^- \in(0,\,1]}\). Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with \({k \in {\mathbb Z}_+}\). In this paper, the authors first introduce an Orlicz–Hardy space \({H^{\Phi}_{L}(\mathbb{R}^n)}\) in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform \({D_{\gamma}L^{-\delta/(2k)}}\) is bounded from the Orlicz–Hardy space \({H^{\Phi}_{L}(\mathbb{R}^n)}\) to the Orlicz space \({L^{\widetilde{\Phi}}(\mathbb{R}^n)}\) when \({p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}\), \({0 < \gamma \le \delta < \infty}\) and \({\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}\), or from \({H^{\Phi}_{L}(\mathbb{R}^n)}\) to the Orlicz–Hardy space \({H^{\widetilde \Phi}(\mathbb{R}^n)}\) when \({p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}\), \({1\le \gamma \le \delta < \infty}\) and \({\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}\), or from \({H^{\Phi}_{L}(\mathbb{R}^n)}\) to the weak Orlicz–Hardy space \({WH^\Phi(\mathbb{R}^n)}\) when \({\gamma = \delta}\) and \({p_\Phi=n/(n + \lfloor \gamma \rfloor)}\) or \({p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}\) with \({p_\Phi^-}\) attainable, where \({\widetilde{\Phi}}\) is an Orlicz function whose inverse function \({\widetilde{\Phi}^{-1}}\) is defined by \({\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}\) for all \({t \in (0,\,\infty)}\) , \({p_\Phi}\) denotes the strictly critical lower type index of \({\Phi}\), \({\lfloor \gamma \rfloor}\) the maximal integer not more than \({\gamma}\) and \({(p_-(L),\,p_+(L))}\) the range of exponents \({p \in[1,\, \infty]}\) for which the semigroup \({\{e^{-tL}\}_{t >0 }}\) is bounded on \({L^p(\mathbb{R}^n)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aoki T.: Locally bounded linear topological space. Proc. Imp. Acad. Tokyo 18, 588–594 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  2. Assaad J., Ouhabaz E.M.: Riesz transforms of Schrödinger operators on manifolds. J. Geom. Anal. 22, 1108–1136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auscher P.: On necessary and sufficient conditions for L p-estimates of Riesz transforms associated to elliptic operators on \({\mathbb{R}^{n}}\) and related estimates. Mem. Am. Math. Soc. 186(871), xviii+75 (2007)

    MathSciNet  Google Scholar 

  4. Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished preprint (2005)

  5. Auscher P., Martell J.: Weighted norm inequalities, off-diagonal estimates and elliptic operators. II. Off-diagonal estimates on spaces of homogeneous type. J. Evol. Equ. 7, 265–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Auscher P., McIntosh A., Russ E.: Hardy spaces of differential forms on Riemannian manifolds. J. Geom. Anal. 18, 192–248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Auscher P., Russ E.: Hardy spaces and divergence operators on strongly Lipschitz domains of \({\mathbb R^n}\) . J. Funct. Anal. 201, 148–184 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barbatis G., Davies E.B.: Sharp bounds on heat kernels of higher order uniformly elliptic operators. J. Oper. Theory 36, 179–198 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Blunck S.: A Hörmander-type spectral multiplier theorem for operators without heat kernel. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2, 449–459 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Blunck S., Kunstmann P.C.: Generalized Gaussian estimates and the Legendre transform. J. Oper. Theory 53, 351–365 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Cao J., Liu Y., Yang D.: Hardy spaces \({H^1_{\mathcal{L}}(\mathbb{R}^{n})}\) associated to Schrödinger type operators (−Δ)2 + V 2. Houston J. Math. 36, 1067–1095 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Cao J., Yang D.: Hardy spaces \({H_L^p(\mathbb{R}^{n})}\) associated to operators satisfying k-Davies–Gaffney estimates. Sci. China Math. 55, 1403–1440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao J., Yang D., Yang S.: Endpoint boundedness of Riesz transforms on Hardy spaces associated with operators. Rev. Mat. Complut. 26, 99–114 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang D.-C., Dafni G., Stein E.M.: Hardy spaces, BMO and boundary value problems for the Laplacian on a smooth domain in \({\mathbb{R}^{n}}\) . Trans. Am. Math. Soc. 351, 1605–1661 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chang, D.-C., Krantz, S.G., Stein, E.M.: Hardy spaces and elliptic boundary value problems. In: The Madison Symposium on Complex Analysis, Madison, WI, 1991, pp. 119–131, Contemp. Math., vol. 137. American Mathemetical Society, Providence, RI (1992)

  16. Chang D.-C., Krantz S.G., Stein E.M.: H p theory on a smooth domain in \({\mathbb{R}^N}\) and elliptic boundary value problems. J. Funct. Anal. 114, 286–347 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coifman R.R.: A real variable characterization of H p. Studia Math. 51, 269–274 (1974)

    MathSciNet  MATH  Google Scholar 

  18. Coifman, R.R., Lions, P.-L., Meyer, Y., Semmes, P.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72, 247–286 (1993)

    Google Scholar 

  19. Coifman R.R., Meyer Y., Stein E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Coifman R.R., Weiss G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davies E.B.: Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132, 141–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duong X.T., Li J.: Hardy spaces associated to operators satisfying bounded H functional calculus and Davies–Gaffney estimates. J. Funct. Anal. 264, 1409–1437 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Duong X.T., Xiao J., Yan L.: Old and new Morrey spaces with heat kernel bounds. J. Fourier Anal. Appl. 13, 87–111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Duong X.T., Yan L.: New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications. Comm. Pure Appl. Math. 58, 1375–1420 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Duong X.T., Yan L.: Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J. Am. Math. Soc. 18, 943–973 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dziubański J., Zienkiewicz J.: Hardy space H 1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Ibero. 15, 279–296 (1999)

    Article  MATH  Google Scholar 

  27. Dziubański, J., Zienkiewicz, J.: H p spaces for Schrödinger operators. In: Fourier analysis and related topics (Będlewo, 2000), pp. 45–53, Banach Center Publication. vol. 56, Polish Academic Science, Warsaw (2002)

  28. Fefferman C., Riviére N.M., Sagher Y.: Interpolation between H p spaces: the real method. Trans. Am. Math. Soc. 191, 75–81 (1974)

    MATH  Google Scholar 

  29. Fefferman C., Stein E.M.: H p spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fefferman R., Soria F.: The space weak H 1. Studia Math. 85, 1–16 (1986)

    MathSciNet  MATH  Google Scholar 

  31. Gaffney M.: The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12, 1–11 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  32. García-Cuerva, J., Rubio de Francia, J.: Weighted norm inequalities and related topics. In: North-Holland Mathematics Studies, vol. 116, Notas de Matemática 104. North-Holland Publishing Co., Amsterdam (1985)

  33. Grafakos, L.: Modern Fourier Analysis. In: Graduate Texts in Mathematics, 2nd edn., vol. 250. Springer, New York (2009)

  34. Haase, M.: The functional calculus for sectorial operators. In: Operator Theory: Advances and Applications, vol. 169. Birkhäuser Verlag, Basel (2006)

  35. Hofmann S., Lu G., Mitrea D., Mitrea M., Yan L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney estimates. Mem. Am. Math. Soc. 214(1007), vi+78 (2011)

    MathSciNet  Google Scholar 

  36. Hofmann S., Martell J.: L p bounds for Riesz transforms and square roots associated to second order elliptic operators. Publ. Mat. 47, 497–515 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Hofmann S., Mayboroda S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344, 37–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hofmann, S., Mayboroda, S.: Correction to “Hardy and BMO spaces associated to divergence form elliptic operators”. arXiv: 0907.0129.

  39. Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in L p, Sobolev and Hardy spaces. Ann. Sci. École Norm. Sup. (4) 44, 723–800 (2011)

    Google Scholar 

  40. Hu G., Yang D., Zhou Y.: Boundedness of singular integrals in Hardy spaces on spaces of homogeneous type. Taiwanese J. Math. 13, 91–135 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Janson S.: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean osillation. Duke Math. J. 47, 959–982 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jiang R., Yang D.: Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates. Commun. Contemp. Math. 13, 331–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jiang R., Yang D.: Predual spaces of Banach completions of Orlicz–Hardy spaces associated with operators. J. Fourier Anal. Appl. 17, 1–35 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jiang R., Yang D.: New Orlicz–Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258, 1167–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jiang R., Yang D.: Generalized vanishing mean oscillation spaces associated with divergence form elliptic operators. Integral Eq. Oper. Theory 67, 123–149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jiang R., Yang D., Zhou Y.: Orlicz–Hardy spaces associated with operators. Sci. China Ser. A 52, 1042–1080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kalton, N., Mayboroda, S., Mitrea, M.: Interpolation of Hardy-Sobolev-Besov-Triebel-Lizorkin spaces and applications to problems in partial differential equations. In: Interpolation theory and applications, Contemp. Math., vol. 445, pp. 121–177. American Mathemetical Society, Providence, RI (2007)

  48. Latter R.H.: A characterization of \({H^p(\mathbb{R}^n)}\) in terms of atoms. Studia Math. 62, 93–101 (1978)

    MathSciNet  MATH  Google Scholar 

  49. Liang Y., Yang D., Yang S.: Applications of Orlicz–Hardy spaces associated with operators satisfying poisson estimates. Sci China Math. 54, 2395–2426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, H.: The weak H p spaces on homogenous groups. In: Harmonic analysis (Tianjin, 1988), Lecture Notes in Math. vol. 1494, pp. 113–118. Springer, Berlin (1991)

  51. Liu, Y., Huang, J.: L p estimates of higher order Schrödinger operators. Submitted

  52. McIntosh, A.: Operators which have an H functional calculus. In: Miniconference on operator theory and partial differential equations (North Ryde, 1986), Proceedings of Centre Mathemetical Analysis, vol. 14, pp. 210–231. Australian National University, Canberra (1986)

  53. Müller S.: Hardy space methods for nolinear partial defferential equations. Tatra Mt. Math. Publ. 4, 159–168 (1994)

    MathSciNet  MATH  Google Scholar 

  54. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 3, 115–162 (1959)

    MathSciNet  Google Scholar 

  55. Ouhabaz, E.M.: Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton, NJ (2005)

  56. Quek T., Yang D.: Calderón–Zygmund-type operators on weighted weak Hardy spaces over \({\mathbb{R}^{n}}\) . Acta Math. Sin. (Engl. Ser.) 16, 141–160 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rolewicz S.: On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. Cl. III. 5, 471–473 (1957)

    MathSciNet  MATH  Google Scholar 

  58. Semmes S.: A primer on Hardy spaces, and some remarks on a theorem of Evans and Müller. Commun. Partial Diff. Eq. 19, 277–319 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  59. Serra C.F.: Molecular characterization of Hardy-Orlicz spaces. Rev. Un. Mat. Argentina 40, 203–217 (1996)

    MathSciNet  MATH  Google Scholar 

  60. Shen Z.: L p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45, 513–546 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  61. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, Monographs in Harmonic Analysis III, vol. 43. Princeton University Press, Princeton (1993)

  62. Stein, E.M., Taibleson, M.H., Weiss, G.: Weak type estimates for maximal operators on certain H p classes. In: Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), Rend. Circ. Mat. Palermo, vol. 2, pp. 81–97 (1981)

  63. Stein E.M., Weiss G.: On the theory of harmonic functions of several variables: I. The theory of H p-spaces. Acta Math. 103, 25–62 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  64. Strömberg J.-O.: Bounded mean osillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J. 28, 511–544 (1979)

    Article  MathSciNet  Google Scholar 

  65. Taibleson, M.H., Weiss, G.: The Molecular Characterization of Certain Hardy Spaces, Representation Theorems for Hardy Spaces, Astérisque, vol. 77. Soc. Math. France, Paris (1980)

  66. Viviani B.E.: An atomic decomposition of the predual of BMO(ρ). Rev. Mat. Ibero. 3, 401–425 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  67. Yan L.: Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc. 360, 4383–4408 (2008)

    Article  MATH  Google Scholar 

  68. Yosida, K.: Functional Analysis: Reprint of the sixth edition (1980), Classics in Mathematics. Springer-Verlag, Berlin (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dachun Yang.

Additional information

Jun Cao is supported by the Fundamental Research Funds for the Central Universities (Grant No. 2012YBXS16). Der-Chen Chang is partially supported by an NSF grant DMS-1203845 and Hong Kong RGC competitive earmarked research grant #601410. Dachun Yang is supported by the National Natural Science Foundation of China (Grant No. 11171027) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120003110003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Chang, DC., Yang, D. et al. Boundedness of Generalized Riesz Transforms on Orlicz–Hardy Spaces Associated to Operators. Integr. Equ. Oper. Theory 76, 225–283 (2013). https://doi.org/10.1007/s00020-013-2058-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-013-2058-0

Mathematics Subject Classification(2010)

Keywords

Navigation