Skip to main content
Log in

Isomorphic Well-Posedness of the Final Value Problem for the Heat Equation with the Homogeneous Neumann Condition

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

This paper concerns the final value problem for the heat equation subjected to the homogeneous Neumann condition on the boundary of a smooth open set in Euclidean space. The problem is here shown to be isomorphically well posed in the sense that there exists a linear homeomorphism between suitably chosen Hilbert spaces containing the solutions and the data, respectively. This improves a recent work of the author, in which the same problem was proven well-posed in the original sense of Hadamard under an additional assumption of Hölder continuity of the source term. Like for its predecessor, the point of departure is an abstract analysis in spaces of vector distributions of final value problems generated by coercive Lax–Milgram operators, now yielding isomorphic well-posedness for such problems. Hereby the data space is the graph normed domain of an unbounded operator that maps final states to the corresponding initial states, resulting in a non-local compatibility condition on the data. As a novelty, a stronger version of the compatibility condition is introduced with the purpose of characterising the data that yield solutions having the regularity property of being square integrable in the generator’s graph norm (instead of in the form domain norm). This result allows a direct application to the class 2 boundary condition in the considered inverse Neumann heat problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems, 2nd edn. Monographs in Mathematics, vol. 96, Birkhäuser/Springer Basel AG, Basel (2011)

  2. Almog, Y., Helffer, B.: On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent. Commun. PDE 40(8), 1441–1466 (2015)

    Article  MATH  Google Scholar 

  3. Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I, Monographs in Mathematics, vol. 89. Birkhäuser, Boston, Abstract linear theory (1995)

  4. Arendt, W.: Semigroups and evolution equations: functional calculus, regularity theory and kernel estimates. In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Problems, vol. 1, pp. 1–86. Elsevier, Amsterdam (2004)

    Google Scholar 

  5. Bardos, C., Tartar, L.: Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines. Arch. Rat. Mech. Anal. 50, 10–25 (1973)

    Article  MATH  Google Scholar 

  6. Christensen, A.-E., Johnsen, J.: Final value problems for parabolic differential equations and their well-posedness. Axioms 7, 1–36 (2018)

  7. Christensen, A.-E., Johnsen, J.: On parabolic final value problems and well-posedness. C. R. Acad. Sci. Paris Ser. I(356), 301–305 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davies, E.B.: One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, (1980)

  9. Denk, R., Hieber, M.G., Prüss, J.: \(R\)-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Mem. Amer. Math. Soc. (2003)

  10. Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196, 189–201 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eldén, L.: Approximations for a Cauchy problem for the heat equation. Inverse Prob. 3(2), 263–273 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

    MATH  Google Scholar 

  13. Evans, L.C.: Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (2010)

  14. Fury, M.A.: Logarithmic well-posed approximation of the backward heat equation in Banach space. J. Math. Anal. Appl. 475(2), 1367–1384 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grebenkov, D.S., Helffer, B.: On spectral properties of the Bloch–Torrey operator in two dimensions. SIAM J. Math. Anal. 50(1), 622–676 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grebenkov, D.S., Helffer, B., Henry, R.: The complex Airy operator on the line with a semipermeable barrier. SIAM J. Math. Anal. 49(3), 1844–1894 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grubb, G.: Functional Calculus of Pseudodifferential Boundary Problems, 2nd edn. Progress in Mathematics, vol. 65. Birkhäuser, Boston (1996)

  18. Grubb, G.: Distributions and Operators, Graduate Texts in Mathematics, vol. 252. Springer, New York (2009)

    Google Scholar 

  19. Grubb, G., Solonnikov, V.A.: Solution of parabolic pseudo-differential initial-boundary value problems. J. Differ. Equ. 87, 256–304 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Helffer, B.: Spectral Theory and Its Applications, Cambridge Studies in Advanced Mathematics, vol. 139. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  21. Herbst, I.W.: Dilation analyticity in constant electric field. I. The two body problem. Commun. Math. Phys. 64(3), 279–298 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hörmander, L.: The Analysis of Linear Partial Differential Operators, Grundlehren der mathematischen Wissenschaften. Springer, Berlin, 1983 (1985)

  23. Janas, J.: On unbounded hyponormal operators. III. Stud. Math. 112(1), 75–82 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. John, F.: Numerical solution of the equation of heat conduction for preceding times. Ann. Mat. Pura Appl. (4) 40, 129–142 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnsen, J.: Characterization of log-convex decay in non-selfadjoint dynamics. Electron. Res. Announc. Math. Sci. 25, 72–86 (2018)

    MathSciNet  Google Scholar 

  26. Johnsen, J.: A Class of Well-Posed Parabolic Final Value Problems. In: Boggiato, P. et al. (eds.) Advances in Microlocal and Time-Frequency Analysis. Appl. Num. Harm. Anal., vol. 99. Birkhäuser, pp. 259–280 (2020)

  27. Johnsen, J.: Well-posed final value problems and Duhamel’s formula for coercive Lax-Milgram operators. Electr. Res. Arch. 27, 20–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Johnsen, J.: On a Criterion for Log-Convex Decay in Non-selfadjoint Dynamics. Research Perspectives. Birkhäuser

  29. Lions, J.-L., Malgrange, B.: Sur l’unicité rétrograde dans les problèmes mixtes parabolic. Math. Scand. 8, 277–286 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications, Springer-Verlag, New York-Heidelberg. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften (1972)

  31. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translations of mathematical monographs, vol. 23. American Mathematical Society (1968)

  32. Masuda, K.: A note on the analyticity in time and the unique continuation property for solutions of diffusion equations. Proc. Jpn. Acad. 43, 420–422 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. Miranker, W.L.: A well posed problem for the backward heat equation. Proc. Am. Math. Soc. 12, 243–247 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  35. Rauch, J.: Partial Differential Equations. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  36. Schwartz, L.: Transformation de Laplace des distributions. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], pp. 196–206 (1952)

  37. Schwartz, L.: Théorie des Distributions, revised and enlarged edition. Hermann, Paris (1966)

    Google Scholar 

  38. Showalter, R.E.: The final value problem for evolution equations. J. Math. Anal. Appl. 47, 563–572 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tanabe, H.: Equations of evolution, Monographs and Studies in Mathematics, vol. 6, Pitman, Boston, MA, Translated from the Japanese by N. Mugibayashi and H. Haneda (1979)

  40. Temam, R.: Navier–Stokes equations, theory and numerical analysis, 3rd edn. Elsevier, Amsterdam (1984)

    MATH  Google Scholar 

  41. Yosida, K.: An abstract analyticity in time for solutions of a diffusion equation. Proc. Jpn. Acad. 35, 109–113 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin, New York (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful for some references that were provided by the anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Johnsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnsen, J. Isomorphic Well-Posedness of the Final Value Problem for the Heat Equation with the Homogeneous Neumann Condition. Integr. Equ. Oper. Theory 92, 43 (2020). https://doi.org/10.1007/s00020-020-02602-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-020-02602-8

Keywords

Mathematics Subject Classification

Navigation