Skip to main content
Log in

Anisotropic Regularity Conditions for the Suitable Weak Solutions to the 3D Navier–Stokes Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We are concerned with the problem, originated from Seregin (159–200, 2007), Seregin (J. Math. Sci. 143: 2961–2968, 2007), Seregin (Russ. Math. Surv. 62:149–168, 2007), what are minimal sufficiently conditions for the regularity of suitable weak solutions to the 3D Navier–Stokes equations. We prove some interior regularity criteria, in terms of either one component of the velocity with sufficiently small local scaled norm and the rest part with bounded local scaled norm, or horizontal part of the vorticity with sufficiently small local scaled norm and the vertical part with bounded local scaled norm. It is also shown that only the smallness on the local scaled L 2 norm of horizontal gradient without any other condition on the vertical gradient can still ensure the regularity of suitable weak solutions. All these conclusions improve pervious results on the local scaled norm type regularity conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale J., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys 94, 61–66 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of Navier–Stokes equation. Commun. Pure. Appl. Math. 35, 771–831 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Cao C., Wu J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263–2274 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Chae D., Kang K., Lee J.: On the interior regularity of suitable weak solutions to the Navier–Stokes equations. Comm. Partial Differ. Equ. 32, 1189–1207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chemin J., Desjardin B., Gallagher I., Grenier E.: Fluids with anisotropic viscosity. Special issue for R. Temam’s 60th birthday. M2AN Math. Model. Numer. Anal 34, 315–335 (2000)

    Article  MathSciNet  Google Scholar 

  6. Dong H., Gu X.: Partial regularity of solutions to the four-dimensional Navier–Stokes equations. Dyn. Partial Differ. Equ. 11, 53–69 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gustafson S., Kang Tsai T.: Interior regularity criteria for suitable weak solutions of the Navier–Stokes equations. Commun. Math. Phys. 273, 161–176 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ladyzenskaja O., Seregin G.: On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations. J. Math. Fluid Mech. 1, 356–387 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Lin F.: A new proof of the Caffarelli-Kohn-Nirenberg Theorem. Commun. Pure Appl. Math. 51, 241–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Majda A., Bertozzi A.: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  11. Miao C., Zheng X.: On the global well-posedness for the Boussinesq system with horizontal dissipation. Commun. Math. Phys 321, 33–67 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Neustupa J., Penel P.: Regularity of a suitable weak solution to the Navier–Stokes equations as a consequence of a regularity of one velocity component. In: Beiraoda Veiga, H., Sequeira, A., Videman, J. (eds.) Nonlinear applied analysis., pp. 391–402. Plenum Press, New York (1999)

    Google Scholar 

  13. Nirenberg L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  14. Scheffer V.: Partial regularity of solutions to the Navier–Stokes equations. Pac. J. Math. 66, 535–552 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Scheffer V.: Hausdorff measure and the Navier–Stokes equations. Commun. Math. Phys 55, 97–112 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Scheffer V.: The Navier–Stokes equations on a bounded domain. Commun. Math. Phys 73, 1–42 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Seregin, G., Šverák, V.: On smoothness of suitable weak solutions to the Navier–Stokes equations. J. Math. Sci. (N. Y.) 130, 4884–4892 (2005)

  18. Seregin, G.: Local regularity theory of the Navier–Stokes equations. In: Friedlander S., Serre D (eds.) Handbook of mathematical fluid dynamics. Vol 4. North-Holland, Amsterdam,159–200 (2007)

  19. Seregin, G.: Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces. J. Math. Sci. (N. Y.) 143, 2961–2968 (2007)

  20. Seregin, G.: On the local regularity of suitable weak solutions of the Navier–Stokes equations. (Russian) Uspekhi Mat. Nauk 62 , 149–168; translation in Russian Math. Surveys 62 595–614 (2007)

  21. Serrin J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  22. Témam, R.: Navier–Stokes equations: theory and numerical analysis. AMS Chelsea Publishing, Providence, RI, Reprint of the 1984 edition (2001)

  23. Tian G., Xin Z.: Gradient estimation on Navier–Stokes equations. Commun. Anal. Geom. 7, 221–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vasseur A.: A new proof of partial regularity of solutions to Navier–Stokes equations. Nonlinear Differ. Equ. Appl. 14, 753–785 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Zhang, L., Zhang Z.: On the interior regularity criteria of the 3-D Navier–Stokes equations involving two velocity components. (2014). arXiv:1410.2399

  26. Wang W., Zhang Z.: On the interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations. SIAM J. Math. Anal. 45, 2666–2677 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang W., Zhang Z.: On the interior regularity criteria and the number of singular points to the Navier–Stokes equations. J. Anal. Math. 123, 139–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, W., Zhang, Z.: Blow-up of critical norms for the 3-D Navier–Stokes equations (2015). arXiv:1510.02589

  29. Wang Y., Wu G.: A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier–Stokes equations. J. Differ. Equ. 256, 1224–1249 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zheng X.: A regularity criterion for the tridimensional Navier–Stokes equations in term of one velocity component. J. Differ. Equ. 256, 283–309 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Wang.

Additional information

Communicated by Y. Giga

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, G. Anisotropic Regularity Conditions for the Suitable Weak Solutions to the 3D Navier–Stokes Equations. J. Math. Fluid Mech. 18, 699–716 (2016). https://doi.org/10.1007/s00021-016-0279-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0279-0

Mathematics Subject Classification

Keywords

Navigation