Skip to main content
Log in

A Pressure Associated with a Weak Solution to the Navier–Stokes Equations with Navier’s Boundary Conditions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We show that if \(\mathbf {u}\) is a weak solution to the Navier–Stokes initial–boundary value problem with Navier’s slip boundary conditions in \(Q_T:=\Omega \times (0,T)\), where \(\Omega \) is a domain in \({{\mathbb {R}}}^3\), then an associated pressure p exists as a distribution with a certain structure. Furthermore, we also show that if \(\Omega \) is a “smooth” domain in \({{\mathbb {R}}}^3\) then the pressure is represented by a function in \(Q_T\) with a certain rate of integrability. Finally, we study the regularity of the pressure in sub-domains of \(Q_T\), where \(\mathbf {u}\) satisfies Serrin’s integrability conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Escobedo, M., Ghosh, A.: Semigroup theory for the Stokes operator with Navier boundary condition in \(L^p\) spaces. arXiv:1808.02001v1 [math.AP] 6 Aug (2018)

  2. Amrouche, Ch., Rejaiba, A.: \(L^p\)-theory for Stokes and Navier–Stokes equations with Navier boundary condition. J. Differ. Equ. 256, 1515–1547 (2014)

    Article  Google Scholar 

  3. Amrouche, Ch., Rejaiba, A.: Navier–Stokes equations with Navier boundary condition. Math. Methods. Appl. Sci. 39, 5091–5112 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Beirão da Veiga, H.: Remarks on the Navier–Stokes evolution equations under slip type boundary conditions with linear friction. Port. Math. (N. S.) 64, 377–387 (2007)

    Article  MathSciNet  Google Scholar 

  5. Borchers, W., Sohr, H.: On the equations \({\rm rot}\, v=g\) and \({\rm div}\, u=f\) with zero boundary conditions. Hokkaido Math. J. 19, 67–87 (1990)

    Article  MathSciNet  Google Scholar 

  6. Bulíček, M., Feireisl, E., Málek, J.: A Navier–Stokes–Fourier system for incompressible fluids with temperature dependent material coefficients. Nonlinear Anal. Real World Appl/ 10, 992–1015 (2009)

    Article  MathSciNet  Google Scholar 

  7. Chen, G.Q., Qian, Z.: A study of the Navier–Stokes equations with the kinematic and Navier boundary conditions. Indiana Univ. Math. J. 59(2), 721–760 (2010)

    Article  MathSciNet  Google Scholar 

  8. Di Fratta, G., Fiorenza, A.: A short proof of local regularity of distributional solutions of Poisson’a equation. Preprint, ASC report no. 10/2019, Inst. for Analysis and Scientific Computing, Vienna University of Technology, ISBN 978-3-902627-00-1

  9. Farwig, R., Kozono, H., Sohr, H.: The Helmholtz decomposition in arbitrary unbounded domains—a theory beyond \(L^2\). In: M. Fila et al. (ed.) Proceedings of Equadiff 11, Comenius University Press, ISBN 978-80-227-2624-5, Bratislava 2005, pp. 77–85

  10. Fujiwara, D., Morimoto, H.: An \(L_r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sec. IA Math. 24 (1977), no. 3, 685–700

  11. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, 2nd edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  12. Galdi, G.P.: An introduction to the Navier–Stokes initial-boundary value problem. In: Galdi, G.P., Heywood, J., Rannacher, R. (eds.) Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics, pp. 1–98. Birkhäuser, Basel (2000)

    Google Scholar 

  13. Geng, J., Shen, Z.: The Neumann problem and Helmholtz decomposition in convex domains. J. Funct. Anal. 259(8), 2147–2164 (2010)

    Article  MathSciNet  Google Scholar 

  14. Giga, Y., Sohr, H.: Abstract \(L^p\)-estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains. J. Funct. Anal. 102, 72–94 (1991)

    Article  MathSciNet  Google Scholar 

  15. Kozono, H., Yanagisawa, T.: \(L^r\)-Helmholtz decomposition and its application to the Navier-Stokes equations. In Lectures on the Analysis of Nonlinear Partial Differential Equations, Part 3, Morningside Lecture note in Mathematics. 3, Int. Press, Somerville, MA, 2013, pp. 237–290

  16. Kučera, P., Neustupa, J.: On robustness of a strong solution to the Navier–Stokes equations with Navier’s boundary conditions in the \(L^3\)-norm. Nonlinearity 30(4), 1564–1583 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lions, J.L.: Quelques méthodes de résolution des problèmes âux limites non linéaire. Dunod, Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  18. Nardi, G.: Schauder estimate for solutions of Poisson’s equation with Neumann boundary condition. L’Ensignement Mathématique 60(2), 421–435 (2014)

    Article  MathSciNet  Google Scholar 

  19. Neustupa, J.: The boundary regularity of a weak solution of the Navier–Stokes equation and connection with the interior regularity of pressure. Appl. Math. 6, 547–558 (2003)

    Article  MathSciNet  Google Scholar 

  20. Neustupa, J., Penel, P.: Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier–Stokes equations. In: Neustupa, J., Penel, P. (eds.) Mathematical Fluid Mechanics, pp. 237–268. Birkhauser, Basel (2001)

    Chapter  Google Scholar 

  21. Neustupa, J., Penel, P.: A weak solution to the Navier-Stokes system with Navier’s boundary condition in a time-varying domain. In: Amann, H., Giga, Y., Kozono, H., Okamoto, H., Yamazaki, M. (eds.) Recent Developments of Mathematical Fluid Mechanics, Series: Advances in Mathematical Fluid Mechanics, pp. 375–400. Birhäuser-Verlag, Basel (2016)

    Chapter  Google Scholar 

  22. Neustupa, J., Al Baba, H.: The interior regularity of pressure associated with a weak solution to the Navier–Stokes equations with the Navier-type boundary conditions. J. Math. Anal. Appl. 463(1), 222–234 (2018)

    Article  MathSciNet  Google Scholar 

  23. Neustupa, J.: The role of pressure in the theory of weak solutions to the Navier–Stokes equations. In: Bodnár, T., Galdi G.P., Nečasová, Š (eds.) Fluids Under Pressure. To be published by Birkhäuser Publishing Ltd

  24. Ohyama, T.: Interior regularity of weak solutions of the time dependent Navier–Stokes equations. Proc. Jpn. Acad. 36, 273–277 (1960)

    Article  MathSciNet  Google Scholar 

  25. Rudin, W.: Functional Analysis. Mc Graw-Hill Inc., New York (1973)

    MATH  Google Scholar 

  26. Saal, J.: Stokes and Navier–Stokes equations with Robin boundary conditions in a half-space. J. Math. Fluid Mech. 8, 211–241 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Seregin, G.A.: New version of the Ladyzhenskaya–Prodi–Serrin condition. St. Petersb. Math. J. 18(1), 89–103 (2007)

    Article  MathSciNet  Google Scholar 

  28. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rat. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  Google Scholar 

  29. Simader, Ch., Sohr, H.: A new approach to the Helmholtz decomposition and the Neumann problem in \(L^q\)-spaces for bounded and exterior domains. In: Galdi, G.P. (ed.) Mathematical Problems Relating to the Navier–Stokes Equation, Series: Adv. Math. Appl. Sci. 11. World Sci. Publ., River Edge, NJ, pp. 1–35 (1992)

  30. Simon, J.: On the existence of pressure for solutions of the variational Navier–Stokes equations. J. Math. Fluid Mech. 1(3), 225–234 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  31. Skalák, Z., Kučera, P.: Regularity of pressure in the neighbourhood of regular points of weak solutions of the Navier–Stokes equations. Appl. Math. 6, 573–586 (2003)

    Article  MathSciNet  Google Scholar 

  32. Sohr, H., von Wahl, W.: On the regularity of the pressure of weak solutions of Navier–Stokes equations. Arch. Math. 46, 428–439 (1986)

    Article  MathSciNet  Google Scholar 

  33. Sohr, H.: The Navier–Stokes Equations. An Elementary Functional Analytic Approach. Birkhäuser Advanced Texts, Basel (2001)

    MATH  Google Scholar 

  34. Solonnikov, V.A., Ščadilov, V.E.: A certain boundary value problem for the stationary system of Navier–Stokes equations. In Boundary Value Problems of Mathematical Physics 8, Trudy Math. Inst. Steklov 125 (1973), 196–210 (Russian), English translation in: Proceedings of the Steklov Institute of Mathematics, vol. 125, pp. 186–199 (1973)

  35. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  36. Wolf, J.: On the local pressure of the Navier–Stokes equations and related systems. Adv. Differ. Equ. 22(5–6), 305–338 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Yosida, K.: Functional Analysis. Springer, Berlin (1965)

    Book  Google Scholar 

Download references

Acknowledgements

The authors have been supported by the Academy of Sciences of the Czech Republic (RVO 67985840) and by the Grant Agency of the Czech Republic, Grant No. 17-01747S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Neustupa.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interests.

Additional information

Communicated by D. Chae

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neustupa, J., Nečasová, Š. & Kučera, P. A Pressure Associated with a Weak Solution to the Navier–Stokes Equations with Navier’s Boundary Conditions. J. Math. Fluid Mech. 22, 37 (2020). https://doi.org/10.1007/s00021-020-00500-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-00500-y

Keywords

Navigation