Skip to main content
Log in

Perturbation Theory for Weak Measurements in Quantum Mechanics, Systems with Finite-Dimensional State Space

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The quantum theory of indirect measurements in physical systems is studied. The example of an indirect measurement of an observable represented by a self-adjoint operator \({\mathcal {N}}\) with finite spectrum is analyzed in detail. The Hamiltonian generating the time evolution of the system in the absence of direct measurements is assumed to be given by the sum of a term commuting with \({\mathcal {N}}\) and a small perturbation not commuting with \({\mathcal {N}}\). The system is subject to repeated direct (projective) measurements using a single instrument whose action on the state of the system commutes with \({\mathcal {N}}\). If the Hamiltonian commutes with the observable \({\mathcal {N}}\) (i.e., if the perturbation vanishes), the state of the system approaches an eigenstate of \({\mathcal {N}}\), as the number of direct measurements tends to \(\infty \). If the perturbation term in the Hamiltonian does not commute with \({\mathcal {N}}\), the system exhibits “jumps” between different eigenstates of \({\mathcal {N}}\). We determine the rate of these jumps to leading order in the strength of the perturbation and show that if time is rescaled appropriately a maximum likelihood estimate of \({\mathcal {N}}\) approaches a Markovian jump process on the spectrum of \({\mathcal {N}}\), as the strength of the perturbation tends to 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holevo, A.S.: Statistical Structure of Quantum Theory. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  2. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics, vol. 2. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  4. Gisin, N.: Quantum measurements and stochastic processes. Phys. Rev. Lett. 52(19), 1657 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  5. Diosi, L.: Quantum stochastic processes as models for state vector reduction. J. Phys. A Math. Gen. 21(13), 2885 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Barchielli, A., Belavkin, V.P.: Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A Math. Gen. 24(7), 1495 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bauer, M., Bernard, D.: Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84(4), 044103 (2011)

    Article  ADS  Google Scholar 

  8. Bauer, M., Benoist, T., Bernard, D.: Repeated quantum non-demolition measurements: convergence and continuous time limit. Ann. H. Poincaré 14, 639–679 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fröhlich, J., Schubnel, B.: Quantum probability theory and the foundations of quantum mechanics. (2013) arXiv preprint arXiv:1310.1484

  10. Bauer, M., Bernard, D., Tilloy, A.: Statistics of quantum jumps and spikes, and limits of diffusive weak measurements. (2014) arXiv preprint arXiv:1410.7231

  11. Tilloy, A., Bauer, M., Bernard, D.: Spikes in quantum trajectories. Phys. Rev. A 92(5), 052111 (2015)

    Article  ADS  Google Scholar 

  12. Bauer, M., Bernard, D., Tilloy, A.: Zooming in on quantum trajectories. J. Phys. A Math. Theor. 49(10), 10LT01 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Haroche, S.: Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev. Mod. Phys. 85(3), 1083 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wineland, D.J.: Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85(3), 1103 (2013)

    Article  ADS  Google Scholar 

  15. Guerlin, C., Bernu, J., Deleglise, S., Sayrin, C., Gleyzes, S., Kuhr, S., Brune, M., Raimond, J.-M., Haroche, S.: Progressive field-state collapse and quantum non-demolition photon counting. Nature 448(7156), 889–893 (2007)

    Article  ADS  Google Scholar 

  16. Murch, K.W., Weber, S.J., Macklin, C., Siddiqi, I.: Observing single quantum trajectories of a superconducting quantum bit. Nature 502(7470), 211–214 (2013)

    Article  ADS  Google Scholar 

  17. Ballesteros, M., Fraas, M., Fröhlich, J., Schubnel, B.: Indirect acquisition of information in quantum mechanics. J. Stat. Phys. 162(4), 924–958 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kraus, K.: States, Effects and Operations. Springer, Berlin (1983)

    MATH  Google Scholar 

  19. Davies, E.B.: Quantum theory of open systems. Academic Press, London (1976)

    MATH  Google Scholar 

  20. Adler, S.L., Brody, D.C., Brun, T.A., Hughston, L.P.: Martingale models for quantum state reduction. J. Phys. A Math. Gen. 34(42), 8795 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bouten, L., Van Handel, R., James, M.R.: A discrete invitation to quantum filtering and feedback control. SIAM Rev. 51(2), 239–316 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Avron, J.E., Fraas, M., Graf, G.M., Grech, P.: Landau–Zener tunneling for dephasing Lindblad evolutions. Commun. Math. Phys. 305(3), 633–639 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Maassen, H., Kümmerer, B.: Purification of quantum trajectories. Lect. Notes Monogr. Ser. 48, 252–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bauer, M., Bernard, D., Benoist, T.: Iterated stochastic measurements. J. Phys. A Math. Theor. 45(49), 494020 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Benoist, T., Pellegrini, C.: Large time behavior and convergence rate for quantum filters under standard non demolition conditions. Commun. Math. Phys. 331(2), 703–723 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Amini, H., Rouchon, P., Mirrahimi, M.: Design of strict control-Lyapunov functions for quantum systems with qnd measurements. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), po. 8193–8198. IEEE (2011)

  27. Van Handel, R., Stockton, J.K., Mabuchi, H.: Feedback control of quantum state reduction. IEEE Trans. Autom. Control 50(6), 768–780 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ballesteros, M., Crawford, N., Fraas, M., Fröhlich, J., Schubnel, B.: Non-demolition measurements of observables with general spectra. arXiv preprint arXiv:1706.09584 (2017)

  29. Sayrin, C., Dotsenko, I., Zhou, X., Peaudecerf, B., Rybarczyk, T., Gleyzes, S., Rouchon, P., Mirrahimi, M., Amini, H., Brune, M., et al.: Real-time quantum feedback prepares and stabilizes photon number states. Nature 477(7362), 73–77 (2011)

    Article  ADS  Google Scholar 

  30. Bassi, K., Dürr, D., Kolb, M.: On the long time behavior of free stochastic Schrödinger evolutions. Rev. Math. Phys. 22(01), 55–89 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bassi, K., Dürr, D.: On the long-time behavior of Hilbert space diffusion. EPL Europhys. Lett. 84(1), 10005 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bauer, M., Bernard, D., Jin, T.: Monitoring continuous spectrum observables: the strong measurement limit. arXiv preprint arXiv:1805.07162 (2018)

  33. De Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré 7(1), 1–68 (1937)

    MathSciNet  MATH  Google Scholar 

  34. Benoist, T., Gamboa, F., Pellegrini, C., et al.: Quantum non demolition measurements: parameter estimation for mixtures of multinomials. Electron. J. Stat. 12(1), 555–571 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Macieszczak, K., Guţă, M., Lesanovsky, I., Garrahan, J.P.: Towards a theory of metastability in open quantum dynamics. Phys. Rev. Lett. 116(24), 240404 (2016)

    Article  ADS  Google Scholar 

  36. Albert, V.V., Bradlyn, B., Fraas, M., Jiang, L.: Geometry and response of Lindbladians. Phys. Rev. X 6(4), 041031 (2016)

    Google Scholar 

  37. Billingsley, P.: Convergence of Probability Measures. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  38. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics: Volume 1: C*-and W*-Algebras. Symmetry Groups. Decomposition of States. Springer, Berlin (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

J. Fröhlich thanks M. Bauer, D. Bernard and A. Tilloy for useful information about their results. M. Ballesteros is a fellow of the Sistema Nacional de Investigadores (SNI). His research is partially supported by the Projects PAPIIT-DGAPA UNAM IN103918 and SEP-CONACYT 254062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fraas.

Additional information

Communicated by Claude-Alain Pillet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballesteros, M., Crawford, N., Fraas, M. et al. Perturbation Theory for Weak Measurements in Quantum Mechanics, Systems with Finite-Dimensional State Space. Ann. Henri Poincaré 20, 299–335 (2019). https://doi.org/10.1007/s00023-018-0741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0741-z

Navigation