Skip to main content
Log in

Frequency-Dependent Amplitude Versus Offset Variations in Porous Rocks with Aligned Fractures

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The theory of frequency-dependent amplitude versus offset (AVO) was developed for patchy-saturated model. In this work, we consider this theory in the case of an anisotropic medium based on a fractured-sandstone model. Thus, building on viscoelastic theory, we introduce a method for the computation of frequency-dependent AVO that is suitable for use in the case of an anisotropic medium. We use both analytical methods and numerical simulations to study P-P and P-S reflection coefficients, and results suggest that dispersion and anisotropy should not be neglected in AVO analysis. Indeed, for class I AVO reservoirs, the reflection magnitude of P-wave increases with frequency, while the responses of class II AVO reservoirs suggest that phase reversal occurs as frequency increases positively. In the case of class III AVO reservoirs, reflection magnitude decreases as frequency increases positively, while in the offset domain, the presence of anisotropy can distort or even reverse AVO responses. Thus, when compared to reflection coefficients for P-wave, reflection magnitude features of S-wave are more complex. The frequency-dependent AVO responses reported in this study provide insights for the interpretation of seismic anomalies in vertical transverse isotropy (VTI) dispersive reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Brajanovski, M., & Müller, T.M. (2007). Strong dispersion and attenuation of P-waves in a partially saturated fractured reservoir: 77th Annual internal meeting, SEG Expanded Abstracts, pp. 1407–1410.

  • Brajanovski, M., B. Gurevich, & G. Lambert. (2003). Attenuation and dispersion of compressional waves in porous rocks with aligned fractures: 73rd Annual internal meeting, SEG Expanded Abstracts, pp. 1620–1623.

  • Brajanovski, M., Gurevich, B., & Schoenberg, M. (2005). A model for P-wave attenuation and dispersion in a porous medium permeated by aligned fractures. Geophysical Journal International, 163(1), 372–384.

    Article  Google Scholar 

  • Carcione, J. M. (1997). Reflection and transmission of qP-qS plane waves at a plane boundary between viscoelastic transversely isotropic media. Geophysical Journal International, 129(3), 669–680.

    Article  Google Scholar 

  • Carcione, J.M. (2007). Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media, Handbook of Geophysical Exploration: Seismic Exploration, vol. 38: Elsevier Science (2nd revised edition).

  • Carcione, J. M., Gurevich, B., & Cavallini, F. (2000). A generalized Biot-Gassman model for the acoustic properties of shaley sandstones. Geophysical Prospecting, 48(3), 539–557.

    Article  Google Scholar 

  • Carcione, J. M., Gurevich, B., Santos, J. E., & Picotti, S. (2013). Angular and frequency-dependent wave velocity and attenuation in fractured porous media. Pure and Applied Geophysics, 170(11), 1673–1683.

    Article  Google Scholar 

  • Gurevich, B., Brajanovski, M., Galvin, R. J., Müller, T. M., & Toms-Stewart, J. (2009). P-wave dispersion and attenuation in fractured and porous reservoirs—poroelasticity approach. Geophysical Prospecting, 57(2), 225–237.

    Article  Google Scholar 

  • Gurevich, B., Zyrianov, V. B., & Lopatnikov, S. L. (1997). Seismic attenuation in finely layered porous rocks: effects of fluid flow and scattering. Geophysics, 62(1), 319–324.

    Article  Google Scholar 

  • Krief, M., Garat, J., Stellingwerff, J., & Ventre, J. (1990). A petrophysical interptretation using the velocities of P and S waves (full-waveform sonic). The Log Analyst, 31(6), 355–369.

    Google Scholar 

  • Krzikalla, F., & Müller, T.M. (2011). Anisotropic P-SV-wave dispersion and attenuation due to inter-layer flow in thinly layered porous rocks: Geophysics, 76(3), WA135–WA145.

  • Lambert, G., Gurevich, B., Brajanovski, M. (2004). Numerical modeling of attenuation and dispersion of P-waves in porous rocks with planar fractures: 74th Annual internal meeting, SEG Expanded Abstracts, pp. 169–1693.

  • Lambert, G., Gurevich, B., & Brajanovski, M. (2006). Attenuation and dispersion of P-waves in porous rocks with planar fractures: comparison of theory and numerical simulations. Geophysics, 71(3), N41–N45.

    Article  Google Scholar 

  • Liu, L., Cao, S., & Wang, L. (2011). Poroelastic analysis of frequency-dependent amplitude-versus-offset variations. Geophysics, 76(3), C31–C40.

    Article  Google Scholar 

  • Nelson, R.A. (2001). Geological analysis of naturally fractured reservoirs, 2nd ed.: GulfPubl. Co.

  • Norris, A. N. (1993). Low-frequency dispersion and attenuation in partially saturated rocks. Journal of the Acoustical Society of America, 94(1), 359–370.

    Article  Google Scholar 

  • Pride, S. R., Berryman, J. G., & Harris, J. M. (2004). seismic attenuation due to wave-induced flow. Journal of Geophysical Research, 109(1), B1201.

    Google Scholar 

  • Ren, H., Goloshubin, G., & Hilterman, F. J. (2009). Poroelastic analysis of amplitude-versus-frequency variations. Geophysics, 74(6), N41–N48.

    Article  Google Scholar 

  • Rüger, A. (1997). P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62(3), 713–722.

    Article  Google Scholar 

  • Rüger, A. (1998). Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics, 63(3), 935–947.

    Article  Google Scholar 

  • Schmidt, H., 2011, OASES Version 3.1 User Guided Reference Manual: Department of Ocean Engineering Massachusetts Institute of Technology.

  • Schmidt, H., & Tango, G. (1986). Efficient global matrix approach to the computation of synthetic seismograms. Geophysical Journal International, 84(2), 331–359.

    Article  Google Scholar 

  • White, J. E. (1975). Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40(2), 224–232.

    Article  Google Scholar 

  • White, J. E., Mikhaylova, N. G., & Lyakhovitskiy, F. M. (1975). Low-frequency seismic waves in fluid-saturated layered rocks: Izvestijia Academy of Sciences USSR. Physics of the Solid Earth, 11(10), 654–659.

    Google Scholar 

Download references

Acknowledgements

This work is kindly supported by the National Science and Technology Major Project of China (Grant No. 2011ZX05024-001-01), National Nature Science Foundation Project of China (Grant No. 41674128), and Sinopec Geophysical Research Institute. We are also grateful to the Department of Ocean Engineering of the Massachusetts Institute of Technology for permission to use the OASES software. We thank two anonymous reviewers and the editor-in-chief for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyuan Cao.

Appendices

Appendix A

1.1 Elastic moduli for low and high-frequency limits

In Eq. 1, low-frequency limit (relaxed) stiffnesses are as follows:

$$c_{33}^{r} = C_{\text{b}} \left[ {1 + \frac{{Z_{\text{N}} \left( {\alpha_{\text{b}} M_{\text{b}} - C_{\text{b}} } \right)^{2} }}{{C_{\text{b}} \left( {1 + Z_{\text{N}} \frac{{M_{\text{b}} L_{\text{b}} }}{{C_{\text{b}} }}} \right)}}} \right],$$
(17)
$$c_{13}^{r} = c_{33}^{r} \left[ {1 - 2\gamma_{\text{b}} \; + \;2\alpha_{\text{b}} \gamma_{\text{b}} \frac{{M_{\text{b}} }}{{C_{\text{b}} }}\frac{{\alpha_{\text{b}} \; + \;Z_{\text{N}} L_{\text{b}} }}{{1\; + \;Z_{\text{N}} \frac{{M_{\text{b}} L_{\text{b}} }}{{C_{\text{b}} }}}}} \right],$$
(18)
$$c_{11}^{r} = \frac{{\left( {c_{13}^{r} } \right)^{2} }}{{c_{33}^{r} }}\; + \;4\left[ {(1 - \gamma_{\text{b}} )\mu_{\text{b}} \; + \;\frac{{\alpha_{\text{b}}^{2} \gamma_{\text{b}}^{2} \frac{{M_{\text{b}} L_{\text{b}} }}{{C_{\text{b}} }}}}{{1 + Z_{\text{N}} \frac{{M_{\text{b}} L_{\text{b}} }}{{C_{\text{b}} }}}}} \right],$$
(19)
$$c_{55}^{r} = \left(\frac{1}{{\mu_{\text{b}} }} + Z_{\text{T}}\right )^{ - 1} ,$$
(20)
$$c_{66}^{r} = \mu_{\text{b}} .$$
(21)

Besides that, the high-frequency limited (unrelaxed) stiffnesses in Eq. 1 are given as follows:

$$c_{33}^{u} = C_{\text{b}} ,$$
(22)
$$c_{13}^{u} = C_{\text{b}} - 2\mu_{\text{b}} ,$$
(23)
$$c_{11}^{u} = C_{\text{b}} ,$$
(24)
$$c_{55}^{u} = \left( {\frac{1}{{\mu_{\text{b}} }} + Z_{\text{T}} } \right)^{ - 1} = c_{55}^{r} ,$$
(25)
$$c_{66}^{u} = \mu_{\text{b}} = c_{66}^{r} .$$
(26)

Here

$$\Delta_{\text{N}} = \frac{{Z_{\text{N}} L_{\text{b}} }}{{1 + Z_{\text{N}} L_{\text{b}} }},$$
(27)
$$\Delta_{\text{T}} \; = \;\frac{{\mu_{\text{b}} Z_{\text{T}} }}{{1\; + \;\mu_{\text{b}} Z_{\text{T}} }},$$
(28)
$$Z_{\text{N}} \equiv \mathop {\lim }\limits_{{h_{\text{c}} \to 0}} \frac{{h_{\text{c}} }}{{L_{\text{c}} }},$$
(29)
$$Z_{\text{T}} \equiv \mathop {\lim }\limits_{{h_{\text{c}} \to 0}} \frac{{h_{\text{c}} }}{{\mu_{\text{c}} }}.$$
(30)

The normalized frequency in Eq. 2 is as follows:

$$\varOmega = \frac{{\omega \eta H^{2} M_{\text{b}} }}{{4\kappa_{\text{b}} C_{\text{b}} L_{\text{b}} }}.$$
(31)

Appendix B

2.1 Empirical model for elastic modulus

On the basis of the empirical model presented by Krief et al. (1990), dry-rock bulk and shear modulus can be computed as follows:

$$\frac{{K_{\text{b}} }}{{K_{\text{s}} }} = \frac{{\mu_{\text{b}} }}{{\mu_{\text{s}} }} = \left( {1 - \phi } \right)^{{3/\left( {1 - \phi } \right)}} .$$
(32)

Rock permeability, \(\kappa_{b}\), is computed using the equation derived by Carcione et al. (2000), as follows:

$$\kappa = \frac{{r_{\text{s}}^{2} \phi^{3} }}{{45(1 - \phi )^{2} }},$$
(33)

where \(r_{\text{s}} = 20\) μm denotes average grain radius.

Appendix C

3.1 Slowness in VTI media

Horizontal slowness \(s_{x}\) in VTI media is defined as follows:

$$s_{x} = \sin \theta /V(\theta ).$$
(34)

In this expression, \(\theta\) is the angle of incidence, while \(V(\theta )\) is the phase velocity of a qP-wave, given by Eq. 3.

Vertical slowness \({\text{s}}_{z}\) is expressed as follows:

$$s_{z} = \pm \frac{1}{\sqrt 2 }\left( {K_{1} \mp p.v.\sqrt {K_{1}^{2} - 4K_{2} K_{3} } } \right)^{{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}}} .$$
(35)

In Eq. 35, as follows:

$$K_{1} = \rho \left( {\frac{1}{{p_{55} }} + \frac{1}{{p_{33} }}} \right) + \frac{1}{{p_{55} }}\left[ {\frac{{p_{13} }}{{p_{33} }}(p_{13} + p_{55} ) - p_{11} } \right]s_{x}^{2} ,$$
(36)
$$K_{2} = \frac{1}{{p_{33} }}(p_{11} s_{x}^{2} - \rho ),$$
(37)

and

$$K_{3} = s_{x}^{2} - \frac{\rho }{{p_{55} }}.$$
(38)

In this expression, \(p_{11}\), \(p_{13}\), \(p_{33}\), \(p_{55}\) are given by Eq. 1, and the signs in \(s_{z}\) correspond to:

(+, −) downward qP-wave;

(+, +) downward qS-wave;

(−, −) upward qP-wave, and;

(−, +) upward qS-wave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Cao, S., Guo, Q. et al. Frequency-Dependent Amplitude Versus Offset Variations in Porous Rocks with Aligned Fractures. Pure Appl. Geophys. 174, 1043–1059 (2017). https://doi.org/10.1007/s00024-016-1423-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1423-8

Keywords

Navigation