Skip to main content
Log in

Estimating Geophysical Bedrock Depth Using Single Station Analysis and Geophysical Data in the Extra-Carpathian Area of Romania

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Local site evaluation is an essential step in understanding the amplification of seismic motion induced by the complex geological structure and their estimation for future strong earthquakes in urban regions. One of the critical parameters on evaluating amplification effects is the depth of the geophysical bedrock, whose interface to soft sediments is responsible for the development of destructive resonance phenomena. The present study is focused on the estimation of the geophysical bedrock depth along the extra-Carpathian area of Romania (Moesian Platform and surroundings) by correlating and interpolating the results obtained from single station measurements with the available geological/geophysical data. Each site was investigated through the computation of horizontal-to-vertical (H/V) spectral ratios from three-component single station measurements of ambient vibrations. The geophysical bedrock depth was computed using a two-step inversion scheme, based on the retrieval of the Rayleigh-wave ellipticity peak at each seismic station using a regional generic velocity profile. The fundamental frequency of resonance reaches the lowest value in the deepest side (0.07 Hz) and is rising to 13 Hz in the South of the Moesian Platform, where a shallow bedrock is present. The computed bedrock depths (from 30 to ~ 3100 m) show a dipping tendency towards the Southern Carpathians and complex features such as local outcrops and lateral depth variations superpose this gradually dipping trend. In the Carpathian foreland, the bedrock is interpreted as the transition between different sediment layers of Neogene, while outside this area as the Neogene—Cretaceous transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arai, H., & Tokimatsu, K. (2004). S-wave velocity profiling by inversion of microtremor H/V spectrum. Bulletin of the Seismological Society of America, 941, 53–63.

    Google Scholar 

  • Asch, K. (2003). The 1:5 Million International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. Geologisches Jahrbuch, SA 3, Stuttgart: E. Schweizerbartsche Verlagsbuchhandlung.

  • Bala, A. (2013). Modelling of seismic site amplification based on in situ geophysical measurements in Bucharest, Romania. Romanian Reports in Physics, 65(2), 495–511.

    Google Scholar 

  • Bard, P. Y. (1999). Microtremor measurements: a tool for site effect estimation? In K. Irikura, K. Kudo, H. Okada, & T. Sasatani (Eds.), The Effects of Surface Geology on Seismic Motion (pp. 1251–1279). Rotterdam: Balkema.

    Google Scholar 

  • Bard, P. Y. & SESAME-Team (2005). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations-measurements, processing and interpretations. SESAME European research project.

  • Besutiu, L., Diaconescu, M., Zlăgnean, L., & Craiu, A. (2019). Structural and Geodynamic Ideas on the Galati-Izvoarele Seismic-Prone Area (Eastern Romania). Pure and Applied Geophysics, 176(1), 65–95.

    Google Scholar 

  • Baise, L. G., Kaklamanos, J., Berry, B. M., & Thompson, E. M. (2016). Soil amplification with a strong impedance contrast: Boston, Massachusetts. Engineering Geology, 202, 1–13.

    Google Scholar 

  • Bocin, A., Stephenson, R., Mocanu, V., & Matenco, L. (2009). Architecture of the south-eastern Carpathians nappes and Focsani Basin (Romania) from 2D ray tracing of densely-spaced refraction data. Tectonophysics, 476(3), 512–527.

    Google Scholar 

  • Bonnefoy-Claudet, S., Cotton, F., & Bard, P.-Y. (2006). The nature of noise wavefield and its applications for site effects studies. Earth-Science Review, 79(3/4), 205–227. https://doi.org/10.1016/j.earscirev.2006.07.004.

    Article  Google Scholar 

  • Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., & Bard, P. Y. (2008). Effects of Love waves on microtremor H/V ratio. Bulletin of the Seismological Society of America, 98(1), 288–300.

    Google Scholar 

  • Cioflan, C. O., Apostol, B. F., Moldoveanu, C. L., Panza, G. F., & Marmureanu, G. (2004). Deterministic approach for the seismic microzonation of Bucharest. Pure and Applied Geophysics, 161, 1149–1164.

    Google Scholar 

  • Cioflan, C. O., Marmureanu, A., & Marmureanu, G. (2009). Nonlinearity in seismic site effects evaluation. Romanian Journal of Physics, 54, 951–964.

    Google Scholar 

  • Coman, A., Manea, E., Cioflan, C., & Radulian, M. (2020). Interpreting the fundamental frequency of resonance for Transylvanian Basin. Romanian Journal of Physics, 65, 809.

    Google Scholar 

  • Constantin, A. P., Pantea, A., & Stoica, R. (2011). Vrancea (Romania) subcrustal earthquakes: historical sources and macroseismic intensity assessment. Romanian Journal of Physics, 56(5–6), 813–826.

    Google Scholar 

  • Craiu, M., Mărmureanu, A., Craiu, A., & Ionescu, C. (2015). Real time earthquake location performance of Romnian seismic network (RONET) for Vrancea intermediate depth earthquakes, as the first step in EEWS. SGEM. https://doi.org/10.5593/SGEM2015/B13/S5.120.

    Article  Google Scholar 

  • D’Amico, V., Picozzi, M., Baliva, F., & Albarello, D. (2008). Ambient noise measurements for preliminary site-effects characterization in the urban area of Florence. Bulletin of the Seismological Society of America, 98, 1373–1388. https://doi.org/10.1785/0120070231.

    Article  Google Scholar 

  • Dinu, C., Wong, H. K., Tambrea, D., & Matenco, L. (2005). Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics, 410(1), 417–435.

    Google Scholar 

  • Edwards, B., Michel, C., Poggi, V., & Fäh, D. (2013). Determination of site amplification from regional seismicity: Application to the Swiss National Seismic Networks. Seismological Research Letters, 84(4), 611–621.

    Google Scholar 

  • Fäh, D., Kind, F., & Giardini, D. (2001). A theoretical investigation of average H/V ratios. Geophysical Journal International, 145, 535–549.

    Google Scholar 

  • Fäh, D., Kind, F., & Giardini, D. (2003). Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. Journal of Seismology, 7, 449–467.

    Google Scholar 

  • Grecu, B., Radulian, M., Mandrescu, N., & Panza, G. F. (2007). H/V spectral ratios technique application in the city of Bucharest:can we get rid of source effect? Journal of Seismology and Earthquake Engineering, 9(1–2), 1–4.

    Google Scholar 

  • Grecu, B., Neagoe, C., Tataru, D., Borleanu, F., & Zaharia, B. (2018). Analysis of seismic noise in the Romanian-Bulgarian cross-border region. Journal of Seismology, 22(5), 1275–1292.

    Google Scholar 

  • Guillier, B., Atakan, K., Chatelain, J. L., Havskov, J., Ohrnberger, M., Cara, F., et al. (2008). Influence of instruments on the H/V spectral ratios of ambient vibrations. Bulletin of Earthquake Engineering, 6(1), 3–31.

    Google Scholar 

  • Haghshenas, E., Bard, P. Y., Theodulidis, N., & Sesame WP04 Team. (2008). Empirical evaluation of microtremor H/V spectral ratio. Bulletin of Earthquake Engineering, 6(1), 75–108.

    Google Scholar 

  • Hauser, F., Raileanu, V., Fielitz, W., Dinu, C., Landes, M., Bala, A., et al. (2007). Seismic crustal structure between the Transylvanian Basin and the Black Sea, Romania. Tectonophysics, 430(1–4), 1–25.

    Google Scholar 

  • Hinzen, K. G., Weber, B., & Scherbaum, F. (2004). On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany. Journal of Earthquake Engineering, 8(06), 909–926.

    Google Scholar 

  • Hobiger, M., Cornou, C., Wathelet, M., Di Giulio, G., Knapmeyer-Endrun, B., Renalier, F., et al. (2013). Ground structure imaging by inversions of Rayleigh wave ellipticity: Sensitivity analysis and application to European strong-motion sites. Geophysical Journal International, 192(1), 207–229.

    Google Scholar 

  • Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241.

    Google Scholar 

  • Kouteva, M., Panza, G. F., Romanelli, F., & Paskaleva, I. (2004). Modelling of the Ground Motion at Russe site (NE Bulgaria) due to the Vrancea Earthquakes. Journal of Earthquake Engineering, 8(2), 209–229.

    Google Scholar 

  • Kronrod, T., Radulian, M., Panza, G., Popa, M., Paskaleva, I., Radovanovich, S., et al. (2013). Integrated transnational macroseismic data set for the strongest earthquakes of Vrancea (Romania). Tectonophysics, 590, 1–23.

    Google Scholar 

  • Maftei, A. (1995). Structural Correlation Between the North Dobrogea Orogen, the Northern Romanian Black Sea Shelf and the Crimean Area. Paper Faculty of Geology and Geophysics, Bucharest University. 120 pp. (in Romanian).

  • Manea, E. F., Michel, C., Poggi, V., Fäh, D., Radulian, M., & Balan, F. S. (2016). Improving the shear wave velocity structure beneath Bucharest (Romania) using ambient vibrations, Geophysical Journal International, Volume 207, Issue 2, 1 November 2016, pp. 848–861

  • Manea, E. F., Michel, C., Hobiger, M., Fäh, D., Cioflan, C. O., & Radulian, M. (2017). Analysis of the seismic wavefield in the Moesian Platform (Bucharest area) for hazard assessment purposes. Geophysical Journal International, 210(3), 1609–1622.

    Google Scholar 

  • Marmureanu, G., Cioflan, C. O., & Marmureanu, A. (2008). New approach on seismic hazard isoseismal map for Romania. Romanian Reports in Physics, 60(4), 1123–1135.

    Google Scholar 

  • Marmureanu, G., Marmureanu, A., Manea, E. F., Toma-Danila, D., & Vlad, M. (2016). Can we still use classic seismic hazard analysis for strong and deep Vrancea earthquakes? Romanian Journal of Physics, Romania, 61(3–4), 728–738.

    Google Scholar 

  • Marmureanu, G., Manea, E. F., Cioflan, C. O., Marmureanu, A., & Toma-Danila, D. (2017). Spectral Response Features used in last IAEA Stress Test to NPP Cernavoda (ROMANIA) by Considering Strong Nonlinear Behaviour of Site Soils. Romanian Journal of Physics, 62, 822.

    Google Scholar 

  • Martin, M. J. R. R., & Ritter, J. R. R. (2005). High-resolution teleseismic body-wave tomography beneath SE Romania—I. Implications for three-dimensional versus one-dimensional crustal correction strategies with a new crustal velocity model. Geophysical Journal International, 162(2), 448–460.

  • Mascandola, C., Massa, M., Barani, S., Albarello, D., Lovati, S., Martelli, L., et al. (2019). Mapping the Seismic Bedrock of the Po Plain (Italy) through Ambient-Vibration Monitoring. Bulletin of the Seismological Society of America, 109(1), 164–177.

    Google Scholar 

  • Matenco, L., Bertotti, G., Cloetingh, S., & Dinu, C. (2003). Subsidence analysis and tectonic evolution of the external Carpathian-Moesian Platform region during Neogene times. Sedimentary Geology, 156(1–4), 71–94.

    Google Scholar 

  • Matenco, L. (2017). Tectonics and exhumation of Romanian Carpathians: Inferences from kinematic and thermochronological studies. In Landform dynamics and evolution in Romania (pp. 15–56). Springer, Cham.

  • Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quaterly Reports, 30(1), 25–33.

    Google Scholar 

  • Nogoshi, M., & Igarashi, T. (1971). On the amplitude characteristics of microtremors, Part 2 (In Japanese with English abstract). Journal of the Seismological Society of Japan, 24, 26–40.

    Google Scholar 

  • Nunziata, C. (2007). A physically sound way of using noise measurements in seismic microzonation, applied to the urban area of Napoli. Engineering Geology, 93(1–2), 17–30.

    Google Scholar 

  • Papanikolaou, D., Barghathi, H., Dabovski, C., Dimitriu, R., El-Hawat, A., Ioane, D., ... & Zagorchev, I. (2004). TRANSMED Transect VII: East European Craton–Scythian Platform – Dobrogea–Balkanides–Rhodope Massif–Hellenides–East Mediterranean–Cyrenaica. In W. Cavazza, F.M. Roure, W. Spakman, G.M. Stampfli and P.A. Ziegler (Eds), The TRANSMED Atlas-The Mediterranean region from crust to Mantle. Geological and Geophysical Framework Springer, Berlin.

  • Parolai, S., Picozzi, M., Richwalski, S. M., & Milkereit, C. (2005). Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophysical Research Letters, 32(1).

  • Paolucci, E., Albarello, D., D’Amico, S., Lunedei, E., Martelli, L., Mucciarelli, M., et al. (2015). A large-scale ambient vibration survey in the area damaged by May–June 2012 seismic sequence in Emilia Romagna, Italy. Bulletin of Earthquake Engineering, 13(11), 3187–3206.

    Google Scholar 

  • Pavel, F., & Vacareanu, R. (2015). Investigation on site conditions for seismic stations in Romania using H/V spectral ratio. Earthquakes and Structures, 9(5), 983–997.

    Google Scholar 

  • Picozzi, M., Parolai, S., & Albarello, D. (2005). Statistical analysis of noise horizontal-to-vertical spectral ratios (HVSR). Bulletin of the Seismological Society of America, 95(5), 1779–1786.

    Google Scholar 

  • Picozzi, M., & Albarello, D. (2007). Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves. Geophysical Journal International, 169(1), 189–200.

    Google Scholar 

  • Poggi, V., & Fäh, D. (2010). Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations. Geophysical Journal International, 180, 251–267.

    Google Scholar 

  • Poggi, V., Edwards, B., & Fäh, D. (2011). Derivation of a reference shear-wave velocity model from empirical site amplification. Bulletin of the Seismological Society of America, 101(1), 258–274.

    Google Scholar 

  • Popa, M., Radulian, M., Grecu, B., Popescu, E., & Placinta, A. O. (2005). Attenuation in Southeastern Carpathians area: Result of upper mantle inhomogeneity. Tectonophysics, 410(1–4), 235–249.

    Google Scholar 

  • Radulian, M., Vaccari, F., Mandrescu, N., Panza, G. F., & Moldoveanu, C. L. (2000). Seismic hazard of Romania: Deterministic approach. Pure and Applied Geophysics, 157, 221–247.

    Google Scholar 

  • Raileanu, V., Bala, A., Hauser, F., Prodehl, C., & Fielitz, W. (2005). Crustal properties from S-wave and gravity data along a seismic refraction profile in Romania. Tectonophysics, 410, 251–272.

    Google Scholar 

  • Raileanu, V., Tataru, D., & Grecu, B. (2012). Crustal models in Romania–I. Moesian platform. Romanian Reports in Physics, 64(2), 539–554.

    Google Scholar 

  • Răbăgia, T., Matenco, L., & Cloetingh, S. (2011). The interplay between eustacy, tectonics and surface processes during the growth of a fault-related structure as derived from sequence stratigraphy: The Govora-Ocnele Mari antiform, South Carpathians. Tectonophysics, 502(1–2), 196–220.

    Google Scholar 

  • Ren, Y., Stuart, G. W., Houseman, G. A., Dando, B., Ionescu, C., Hegedüs, E., & South Carpathian Project Working Group. (2012). Upper mantle structures beneath the Carpathian-Pannonian region: Implications for the geodynamics of continental collision. Earth and Planetary Science Letters, 349, 139–152.

    Google Scholar 

  • Ritter, J. R., Balan, S., Bonjer, K., Diehl, T., Forbriger, T., Marmureanu, G., et al. (2005). Broadband urban seismology in the Bucharest metropolitan area. Seismological Research Letters, 76(5), 574–580.

    Google Scholar 

  • Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., et al. (2008). The Alpine- Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units, Swiss. Journal of Geosciences, 101, 139–183. https://doi.org/10.1007/s00015-008-1247-3.

    Article  Google Scholar 

  • Tărăpoancă, M., Bertotti, G., Maţenco, L., Dinu, C., & Cloetingh, S. A. P. L. (2003). Architecture of the Focşani depression: A 13 km deep basin in the Carpathians bend zone (Romania), Tectonics, 22(6).

  • Tărăpoancă, M., Garcia-Castellanos, D., Bertotti, G., Matenco, L., Cloetingh, S. A. P. L., & Dinu, C. (2004). Role of the 3-D distributions of load and lithospheric strength in orogenic arcs: Polystage subsidence in the Carpathians foredeep. Earth and Planetary Science Letters, 221(1–4), 163–180.

    Google Scholar 

  • Tari, G., Dicea, O., Faulkerson, I., Georgiev, G., Popov, S., Stefanescu, M., et al. (1998). Cimmerian and Alpine stratigraphy and structural evolution of the Moesian Platform (Romania/Bulgaria). Memoirs-American Association of Petroleum Geologists, 68, 63–90.

    Google Scholar 

  • Vangelov, D., Gerdjikov, Y., Kounov, A., & Lazarova, A. (2013). The Balkan Fold-Thrust Belt: an overview of the main features.Geologica Balcanica, 42, 1 – 3, Sofia, p. 29–47.

  • Yilar, E., Baise, L. G., & Ebel, J. E. (2017). Using H/V measurements to determine depth to bedrock and Vs30 in Boston, Massachusetts. Engineering geology, 217, 12–22.

    Google Scholar 

  • Wenzel, F., Lorenz, F. P., Sperner, B., & Oncescu, M. C. (1999). Seismotectonics of the Romanian Vrancea area. In Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation (pp. 15–25). Springer, Dordrecht.

Download references

Acknowledgements

This study was carried out within the Nucleu Program MULTIRISC, supported by MCI, project number PN19080102 and Alina Coman’s PhD project. Part of this work was supported by the Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe (SERA) project funded by the EU Horizon 2020 programme under Grant Agreement 730900. We thank to Mihai Tapoanca and Liviu Matenco for providing us the geophysical and geological information obtained from their studies. We are grateful to the Editor, Dr. Carla F. Braitenberg, Dr. Greg Houseman and to the anonymous reviewer for their remarks and valuable suggestions, which helped us to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Florinela Manea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manea, E.F., Cioflan, C.O., Coman, A. et al. Estimating Geophysical Bedrock Depth Using Single Station Analysis and Geophysical Data in the Extra-Carpathian Area of Romania. Pure Appl. Geophys. 177, 4829–4844 (2020). https://doi.org/10.1007/s00024-020-02548-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02548-3

Keywords

Navigation