Skip to main content
Log in

The Importance of Atmospheric Corrections on InSAR Surveys Over Turkey: Case Study of Tectonic Deformation of Bodrum-Kos Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

A Correction to this article was published on 18 November 2020

This article has been updated

Abstract

The Bodrum-Kos earthquake which occurred on 20th July 2017 at 1:31 am local time with a magnitude of Mw 6.6 in the Gulf of Gökova in Turkey. The Bodrum-Kos earthquake caused a small radius tsunami in Bodrum coast and its surroundings. Here, the Interferometric Synthetic Aperture Radar (InSAR) method was utilized to reveal tectonic deformation caused by the Bodrum-Kos earthquake. The InSAR technique was increasingly used to detect ground deformation such as landslide, tectonic or volcanic. In this study, the crucial atmospheric corrections which are GACOS and phase-elevation corrections on InSAR data are discussed. GACOS correction is based on high-resolution European Centre for Medium-Range Weather Forecasts weather model at 0.125° and 6-h resolutions, SRTM DEM and ASTER GDEM. GACOS is used to separate stratified and turbulent signals from tropospheric total delays and generate high spatial resolution zenith total delay maps to be used for correcting InSAR measurements and other applications. Phase-elevation linear correction is also used to separate mostly stratified signals from tropospheric total delays due to the topographic elevation changes and 3 arc second topographic map was used in the phase-elevation correction. These atmospheric correction methods were tried both separately and sequentially and standard deviations of each method were presented. The points comparison of the cumulative line of sight displacement maps were made after and before correction. The point on the Karaada (C point) shows subsidence after the earthquake and then recovers again. Time-series results of all points show similar values until the earthquake occurs. Time-series result also shows that the Bodrum-Kos earthquake has a small radius effect over the land area only the north and maybe west island due to the occurrence on the sea and lost its much energy without reaching the land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

  • 18 November 2020

    Unfortunately the following reference has been omitted.

References

  • Albino, F., Biggs, J., & Syahbana, D. K. (2019). Dyke intrusion between neighbouring arc volcanoes responsible for 2017 pre-eruptive seismic swarm at Agung. Nature Communications, 10(1), 748.

    Article  Google Scholar 

  • Albino, F., Biggs, J., Yu, C., & Li, Z. (2020). Automated methods for detecting volcanic deformation using Sentinel-1InSAR time series illustrated by the 2017–2018 unrest at Agung, Indonesia. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2019JB017908.

    Article  Google Scholar 

  • Biggs, J., Bergman, E., Emmerson, B., Funning, G. J., Jackson, J., Parsons, B., & Wright, T. J. (2006). Fault identification for buried strike-slip earthquakes using InSAR: The 1994 and 2004 Al Hoceima, Morocco earthquakes. Geophysical Journal International, 166(3), 1347–1362.

    Article  Google Scholar 

  • Biggs, J., Burgmann, R., Freymueller, J. T., Lu, Z., Parsons, B., Ryder, I., & Wright, T. (2009). The postseismic response to the 2002 M 7.9 Denali Fault earthquake: Constraints from InSAR 2003–2005. Geophysical Journal International, 176(2), 353–367.

    Article  Google Scholar 

  • Biggs, J., Robinson, D. P., & Dixon, T. H. (2009). The 2007 Pisco, Peru, earthquake (M 8.0): Seismology and geodesy. Geophysical Journal International, 176(3), 657–669.

    Article  Google Scholar 

  • Bos, A. G., Usai, S., & Spakman, W. (2004). A joint analysis of GPS motions and InSAR to infer the coseismic surface deformation of the Izmit, Turkey earthquake. Geophysical Journal International, 158(3), 849–863.

    Article  Google Scholar 

  • Burgmann, R., Ayhan, M. E., Fielding, E. J., Wright, T. J., McClusky, S., Aktug, B., & Turkezer, A. (2002). Deformation during the 12 November 1999 Duzce, Turkey, earthquake, from GPS and InSAR data. Bulletin of the Seismological Society of America, 92(1), 161–171.

    Article  Google Scholar 

  • Chlieh, M., De Chabalier, J. B., Ruegg, J. C., Armijo, R., Dmowska, R., Campos, J., & Feigl, K. L. (2004). Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. Geophysical Journal International, 158(2), 695–711.

    Article  Google Scholar 

  • Cordrie, L., Gailler, A., Heinrich, P., Hébert, H., & Schindelé, F. (2018). Tsunami modeling of the 20th July 2017 Mw 6.6 earthquake in the Aegean Sea. In EGU General Assembly Conference Abstracts, 20, 15114.

  • Delouis, B., Lundgren, P., Salichon, J., & Giardini, D. (2000). Joint inversion of InSAR and teleseismic data for the slip history of the 1999 Izmit (Turkey) earthquake. Geophysical Research Letters, 27(20), 3389–3392.

    Article  Google Scholar 

  • Dewey, J. F. (1988). Extensional collapse of orogens. Tectonics, 7(6), 1123–1139.

    Article  Google Scholar 

  • Dewey, J. F., & Şengör, A. M. C. (1979). Aegean and surrounding regions: complex multi-plate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 89–92.

    Article  Google Scholar 

  • Dogan, U., Demir, D. Ö., Çakir, Z., Ergintav, S., Ozener, H., Akoğlu, A. M., & Reilinger, R. (2014). Postseismic deformation following the Mw 7.2, 23 October 2011 Van earthquake (Turkey): Evidence for aseismic fault reactivation. Geophysical Research Letters, 41(7), 2334–2341.

    Article  Google Scholar 

  • Doin, M. P., Lasserre, C., Peltzer, G., Cavalié, O., & Doubre, C. (2009). Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69(1), 35–50.

    Article  Google Scholar 

  • Elliott, J. R., Copley, A. C., Holley, R., Scharer, K., & Parsons, B. (2013). The 2011 Mw 7.1 Van (eastern Turkey) earthquake. Journal of Geophysical Research Solid Earth, 118(4), 1619–1637.

    Article  Google Scholar 

  • Ergintav, S., McClusky, S., Hearn, E., Reilinger, R., Cakmak, R., Herring, T., & Tari, E. (2009). Seven years of postseismic deformation following the 1999, M= 7.4 and M= 7.2, Izmit-Düzce, Turkey earthquake sequence. Journal of Geophysical Research Solid Earth, 114(B7), 1–19.

    Google Scholar 

  • Feng, W., Li, Z., Hoey, T., Zhang, Y., Wang, R., Samsonov, S., & Xu, Z. (2014). Patterns and mechanisms of coseismic and postseismic slips of the 2011 MW 7.1 Van (Turkey) earthquake revealed by multi-platform synthetic aperture radar interferometry. Tectonophysics, 632, 188–198.

    Article  Google Scholar 

  • Fielding, E. J., Lundgren, P. R., Taymaz, T., Yolsal-Çevikbilen, S., & Owen, S. E. (2013). Fault-slip source models for the 2011 M 7.1 Van earthquake in Turkey from SAR interferometry, pixel offset tracking, GPS, and seismic waveform analysis. Seismological Research Letters, 84(4), 579–593.

    Article  Google Scholar 

  • Ganas, A., Elias, P., Kapetanidis, V., Valkaniotis, S., Briole, P., Kassaras, I., & Moshou, A. (2018). The July 20, 2017 M6. 6 Kos-Bodrum earthquake: seismic and geodetic evidence for a north-dipping, normal fault at the western end of the Gulf of Gökova, SE Aegean Sea. In EGU General Assembly Conference Abstracts, 20, 9262.

  • González, P. J., Walters, R. J., Hatton, E. L., Spaans, K., McDougall, A., Hooper, A. J., & Wright, T. J. (2016). LiCSAR: Tools for automated generation of Sentinel-1 frame interferograms. Ion AGU Fall Meeting.

  • Hamiel, Y., & Fialko, Y. (2007). Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake. Journal of Geophysical Research Solid Earth, 112(B7), 1–12.

    Google Scholar 

  • Hanssen, R. F. (2001). Radar interferometry: Data interpretation and error analysis. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Hooper, A., Wright, T. J., Spaans, K., Elliott, J., Weiss, J. R., Bagnardi, M., & McDougall, A. (2018). Global monitoring of fault zones and volcanoes with Sentinel-1. In IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 1566–1568).

  • Jolivet, R., Grandin, R., Lasserre, C., Doin, M. P., & Peltzer, G. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical Research Letters, 38(17), 1–6.

    Article  Google Scholar 

  • Kaneko, Y., Fialko, Y., Sandwell, D. T., Tong, X., & Furuya, M. (2013). Interseismic deformation and creep along the central section of the North Anatolian fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research Solid Earth, 118(1), 316–331.

    Article  Google Scholar 

  • Karasözen, E., Nissen, E., Büyükakpınar, P., Cambaz, M. D., Kahraman, M., Kalkan, E., & Özacar, A. A. (2018). The 2017 July 20 M w 6.6 Bodrum-Kos earthquake illuminates active faulting in the Gulf of Gökova, SW Turkey. Geophysical Journal International, 214(1), 185–199.

    Article  Google Scholar 

  • Konca, A. O., Guvercin, S. E., Ozarpaci, S., Ozdemir, A., Funning, G. J., Dogan, U., & Reilinger, R. (2019). Slip distribution of the 2017 M w6. 6 Bodrum-Kos earthquake: resolving the ambiguity of fault geometry. Geophysical Journal International, 219(2), 911–923.

    Article  Google Scholar 

  • Lawrence, B. N., Bennett, V. L., Churchill, J., Juckes, M., Kershaw, P., Pascoe, S., et al. (2013). Storing and manipulating environmental big data with JASMIN. San Francisco: IEEE Big Data.

    Book  Google Scholar 

  • Le Mouélic, S., Raucoules, D., Carnec, C., & King, C. (2005). A least squares adjustment of multi-temporal InSAR data. Photogrammetric Engineering and Remote Sensing, 71(2), 197–204.

    Article  Google Scholar 

  • Le Pichon, X., & Angelier, J. (1979). The Hellenic arc and trench system: A key to the evolution of eastern Mediterranean area. Tectonophysics, 60, 1–42.

    Article  Google Scholar 

  • Michel, R., & Avouac, J. P. (2002). Deformation due to the 17 August 1999 Izmit, Turkey, earthquake measured from SPOT images. Journal of Geophysical Research Solid Earth, 107(B4), 1–8.

    Google Scholar 

  • Morishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J. R., & Hooper, A. (2020). LiCSBAS: An open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor. Remote Sensing, 12, 424.

    Article  Google Scholar 

  • Motagh, M., Schurr, B., Anderssohn, J., Cailleau, B., Walter, T. R., Wang, R., & Villotte, J. P. (2010). Subduction earthquake deformation associated with 14 November 2007, Mw 7.8 Tocopilla earthquake in Chile: Results from InSAR and aftershocks. Tectonophysics, 490(1–2), 60–68.

    Article  Google Scholar 

  • Reilinger, R. E., Ergintav, S., Burgmann, R., McClusky, S., Lenk, O., Barka, A., & Aktug, B. (2000). Coseismic and postseismic fault slip for the 17 August 1999, M= 7.5, Izmit, Turkey earthquake. Science, 289(5484), 1519–1524.

    Article  Google Scholar 

  • Sengör, A. M. C., Satir, M., & Akkök, R. (1984). Timing of tectonic events in the Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics, 3(7), 693–707.

    Article  Google Scholar 

  • Seyitoğlu, G., & Scott, B. C. (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128, 155–221.

    Article  Google Scholar 

  • Simons, M., Fialko, Y., & Rivera, L. (2002). Coseismic deformation from the 1999 M w 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bulletin of the Seismological Society of America, 92(4), 1390–1402.

    Article  Google Scholar 

  • Tiryakioğlu, İ, Aktuğ, B., Yiğit, C. Ö., Yavaşoğlu, H. H., Sözbilir, H., Özkaymak, Ç., & Özener, H. (2018). Slip distribution and source parameters of the 20 July 2017 Bodrum-Kos earthquake (Mw6. 6) from GPS observations. Geodinamica Acta, 30(1), 1–14.

    Article  Google Scholar 

  • Usai, S. (2003). A least squares database approach for SAR interferometric data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 753–760.

    Article  Google Scholar 

  • Wang, C., Ding, X., Li, Q., Shan, X., Zhu, W., Guo, B., & Liu, P. (2015). Coseismic and postseismic slip models of the 2011 Van earthquake, Turkey, from InSAR, offset-tracking, MAI, and GPS observations. Journal of Geodynamics, 91, 39–50.

    Article  Google Scholar 

  • Werner, C., Wegmüller, U., Strozzi, T., & Wiesmann, A. (2000). Gamma SAR and interferometric processing software. In Proceedings of the ERS-ENVISAT symposium, Gothenburg, Sweden, 1620.

  • Wright, T., Fielding, E., & Parsons, B. (2001). Triggered slip: Observations of the 17 August 1999 Izmit (Turkey) earthquake using radar interferometry. Geophysical Research Letters, 28(6), 1079–1082.

    Article  Google Scholar 

  • Wright, T. J., Parsons, B. E., & Lu, Z. (2004). Toward mapping surface deformation in three dimensions using InSAR. Geophysical Research Letters, 31(1), 1–5.

    Article  Google Scholar 

  • Yu, C., Penna, N. T., & Li, Z. (2017). Generation of real-time mode high-resolution water vapor fields from GPS observations. Journal of Geophysical Research Atmospheres, 122(3), 2008–2025.

    Article  Google Scholar 

  • Yu, C., Li, Z., Penna, N. T., & Crippa, P. (2018). Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations. Journal of Geophysical Research Solid Earth, 123(10), 9202–9222.

    Article  Google Scholar 

  • Yu, C., Li, Z., & Penna, N. T. (2018). Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sensing of Environment, 204, 109–121.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Fabien Albino and Prof. Dr. Juliet Biggs for their kindly assistance with atmospheric corrections. Besides, I would like to thank the reviewers and the editor for their helpful comments on the paper. Also, I would like to thank COMET-LiCS Sentinel-1 Sentinel Portal which contains modified Copernicus Sentinel data [2017] analysed by the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET). LiCSAR uses JASMIN, the UK’s collaborative data analysis environment (https://jasmin.ac.uk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikret Dogru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: reference Albino et al. 2020 has been omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogru, F. The Importance of Atmospheric Corrections on InSAR Surveys Over Turkey: Case Study of Tectonic Deformation of Bodrum-Kos Earthquake. Pure Appl. Geophys. 177, 5761–5780 (2020). https://doi.org/10.1007/s00024-020-02606-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02606-w

Keywords

Navigation