Skip to main content
Log in

Fractional Maximal Operator on Musielak–Orlicz Spaces Over Unbounded Quasi-Metric Measure Spaces

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The main target of this article is the boundedness of the fractional maximal operator , on Musielak–Orlicz spaces \(L^{\Phi }(X)\) over unbounded quasi-metric measure spaces as an extension of recent results by Cruz-Uribe and Shukla (Studia Math 242(2):109–139, 2018) and the authors (2019), where \(\eta \) is the order of the fractional maximal operator and \(\lambda \) is its modification rate. Our results are new even for the Hardy–Littlewood maximal operator \(M_{\lambda }\) or for the Orlicz spaces \(L^{p(\cdot )}(\log L)^{q(\cdot )}(X)\). Usually, for the proof of the boundedness, the three-line theorem is employed. This new technique of using the three-line theorem enables us to extend the function spaces with ease. An example explains why we can not remove the modification parameter \(\lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)

    Article  MathSciNet  Google Scholar 

  2. Adamowicz, T., Harjulehto, P., Hästö, P.: Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces. Math. Scand. 116(1), 5–22 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A.: Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces. J. Funct. Anal. 275(9), 2538–2571 (2018)

  4. Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operators on variable \(L^p\) spaces. Rev. Mat. Iberoam. 23(3), 743–770 (2007)

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  6. Cruz-Uribe, D., Fiorenza, A.: \(L\log L\) results for the maximal operator in variable \(L^{p}\) spaces. Trans. Am. Math. Soc. 361, 2631–2647 (2009)

    Article  Google Scholar 

  7. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.J.: The maximal function on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Ser. Math. 28, 223–238 (2003) 29 (2004), 247–249

  8. Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. 370(6), 4323–4349 (2018)

    Article  MathSciNet  Google Scholar 

  9. Cruz-Uribe, D., Shukla, P.: The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type. Studia Math. 242(2), 109–139 (2018)

    Article  MathSciNet  Google Scholar 

  10. Diening, L.: Maximal functions in generalized \(L^{p(\cdot )}\) spaces. Math. Inequal. Appl. 7(2), 245–254 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Fabes, E.B., Gutiérrez, C., Scotto, R.: Weak type estimates for the Riesz transforms associated with the Gaussian measure. Rev. Mat. Iberoam. 10, 229–281 (1994)

    Article  MathSciNet  Google Scholar 

  12. Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potential space of variable exponent on metric spaces. Ann. Acad. Sci. Fenn. Math. 31, 495–522 (2006)

    MathSciNet  MATH  Google Scholar 

  13. García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland Math. Stud. 116 (1985)

  14. Gutiérrez, C.E.: On the Riesz transforms for Gaussian measures. J. Funct. Anal. 120, 107–134 (1994)

    Article  MathSciNet  Google Scholar 

  15. Gutiérrez, C.E., Segovia, C., Torrea, J.L.: On higher order Riesz transforms for Gaussian measures. J. Fourier Anal. Appl. 2, 583–596 (1996)

    Article  MathSciNet  Google Scholar 

  16. Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A.: Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space. J. Differ. Equ. 264(1), 341–377 (2018)

    Article  MathSciNet  Google Scholar 

  17. Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (688) (2000)

  18. Harjulehto, P., Hästö, P.: Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, 2236. Springer, Cham (2019)

  19. Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O.: Critical variable exponent functionals in image restoration. Appl. Math. Letters 26, 56–60 (2013)

    Article  MathSciNet  Google Scholar 

  20. Harjulehto, P., Hästö, P., Pere, M.: Variable exponent Lebesgue spaces on metric spaces: the Hardy–Littlewood maximal operator. Real Anal. Exchange 30, 87–104 (2004/05)

  21. Hashimoto, D., Sawano, Y., Shimomura, T.: Gagliardo–Nirenberg inequality for generalized Riesz potentials of functions in Musielak–Orlicz spaces over quasi-metric measure spaces. Colloq. Math. 161, 51–66 (2020)

    Article  MathSciNet  Google Scholar 

  22. Kairema, A.: Two-weight norm inequalities for potential type and maximal operators in a metric space. Publ. Mat. 57, 3–56 (2013)

    Article  MathSciNet  Google Scholar 

  23. Kanemori, S., Ohno, T., Shimomura, T.: Trudinger’s inequality and continuity for Riesz potential of functions in Orlicz spaces of two variable exponents over non-doubling measure spaces. Kyoto J. Math. 57, 79–96 (2017)

  24. Liu, L.G., Sawano, Y., Yang, D.: Morrey-type spaces on Gauss measure spaces and boundedness of singular integrals. J. Geom. Anal. 24(2), 1007–1051 (2014)

    Article  MathSciNet  Google Scholar 

  25. Maeda, F.-Y., Mizuta, Y., Ohno, T.: Approximate identities and Young type inequalities in variable Lebesgue–Orlicz spaces \(L^{p(\cdot )}(\log L)^{q(\cdot )}\). Ann. Acad. Sci. Fenn. Math. 35, 405–420 (2010)

    Article  MathSciNet  Google Scholar 

  26. Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev’s inequality on Musielak–Orlicz–Morrey spaces. Bull. Sci. Math. 137, 76–96 (2013)

  27. Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev’s inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space \(L^{p(\cdot )}(\log L)^{q(\cdot )}\). J. Math. Anal. Appl. 345, 70–85 (2008)

  28. Musielak, J.: Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034. Springer (1983)

  29. Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Notices (15), 703–726 (1997)

  30. Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Notices (9), 463–487 (1998)

  31. Nekvinda, A.: Hardy-Littlewood maximal operator on \(L^{p(x)}({{\mathbb{R}}}^n)\). Math. Inequal. Appl. 7(2), 255–266 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Ohno, T., Shimomura, T.: Sobolev inequalities for Riesz potentials of functions in \(L^{p(\cdot )}\) over nondoubling measure spaces. Bull. Aust. Math. Soc. 93, 128–136 (2016)

    Article  MathSciNet  Google Scholar 

  33. Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)

    Book  Google Scholar 

  34. Sawano, Y.: Sharp estimates of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34, 435–458 (2005)

    Article  MathSciNet  Google Scholar 

  35. Sawano, Y.: Theory of Besov spaces, 56 Springer, Singapore. xxiii+945 pp (2018)

  36. Sawano, Y., Shimomura, T.: Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces. Proc. Am. Math. Soc. 147, 2877–2885 (2019)

    Article  MathSciNet  Google Scholar 

  37. Sihwaningrum, I., Sawano, Y.: Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces. Eurasian Math. J. 4, 76–81 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Stempak, K.: Modified Hardy–Littlewood maximal operators on nondoubling metric measure spaces. Ann. Acad. Sci. Fenn. Math. 40(1), 443–448 (2015)

    Article  MathSciNet  Google Scholar 

  39. Stempak, K.: Examples of metric measure spaces related to modified Hardy–Littlewood maximal operators. Ann. Acad. Sci. Fenn. Math. 41(1), 313–314 (2016)

    Article  MathSciNet  Google Scholar 

  40. Stein, E.M.: Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  41. Strömberg, J.-O.: Weak type \(L^1\) estimates for maximal functions on noncompact symmetric spaces. Ann. Math. (2) 114(1), 115–126 (1981)

    Article  MathSciNet  Google Scholar 

  42. Terasawa, Y.: Outer measures and weak type \((1,1)\) estimates of Hardy–Littlewood maximal operators. J. Inequal. Appl. 2006, Art. ID 15063, 13pp

  43. Welland, G.V.: Weighted norm inequalities for fractional integrals. Proc. Am. Math. Soc. 51, 143–148 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Yoshihiro Sawano was supported by Grant-in-Aid for Scientific Research (C) (19K03546), the Japan Society for the Promotion of Science and People’s Friendship University of Russia. Tetsu Shimomura is partially supported by Grant-in-Aid for Scientific Research (C), No. 18K03332, Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

The two authors contributed equally to the paper. They read the whole paper and approved it.

Corresponding author

Correspondence to Yoshihiro Sawano.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix–An Estimate of Welland Type

Appendix–An Estimate of Welland Type

The following equivalence is well known. But for the sake of self-containedness, we supply its proof. The symbol \(g\sim h\) means that \(C^{-1}h\le g\le Ch\) for some constant \(C>0\).

Lemma 6.1

Let \(\varepsilon ,A,B>0\). Then

$$\begin{aligned} \sum _{j=-\infty }^\infty \min (2^{-j\varepsilon }A,2^{j\varepsilon }B) \sim \sqrt{A B}. \end{aligned}$$

This estimate is standard and somewhat well known. Here for the sake of convenience, we supply the whole proof.

Proof

Let \(j_0\equiv \left[ \frac{1}{2 \varepsilon } \log _2 \frac{A}{B}\right] \). Then \(2^{-j_0\varepsilon }A \sim 2^{j_0\varepsilon }B\). Thus,

$$\begin{aligned} \sum _{j=-\infty }^\infty \min (2^{-j\varepsilon }A,2^{j\varepsilon }B)&\sim \sum _{j=-\infty }^{j_0} 2^{j\varepsilon }B + \sum _{j=j_0}^\infty 2^{-j\varepsilon }A\\&\sim 2^{j_0\varepsilon }B+2^{-j_0\varepsilon }A\\&\sim \sqrt{A B}. \end{aligned}$$

\(\square \)

The following lemma extends [9, Proposition 5.1]. We employ the idea of Welland [43].

Lemma 6.2

Let \(0<\eta <1\), \(0<\varepsilon <\min (1-\eta ,\eta )\) and \(\lambda \ge 1\). Then

$$\begin{aligned} I_{\eta ,\lambda }f(x) \le C \sqrt{ M_{\eta -\varepsilon ,\lambda }f(x) M_{\eta +\varepsilon ,\lambda }f(x) } \quad (x \in X) \end{aligned}$$

for any non-negative \(\mu \)-measurable function f.

Noteworthy is the fact that we do not have to postulate any condition on \(\mu \) such as the reverse doubling condition. In [9, Proposition 5.1], they used the assumption that \(\mu \) is a reverse doubling measure, that is,

$$\begin{aligned} \mu (B(x,r/2)) \le \gamma \mu (B(x,r)) \end{aligned}$$

for every \(x \in X\), \(r>0\) such that \(B(x,r) \subset X\) and some constant \(0<\gamma <1\).

Proof

Let us set

$$\begin{aligned} r_j \equiv \max \{r>0\,:\,\mu (B(x,\lambda r)) \le 2^j\} = \sup \{r>0\,:\,\mu (B(x,\lambda r)) \le 2^j\}. \end{aligned}$$

Then we have \(r_j \le r_{j+1}\) for all \(j \in {{\mathbb {Z}}}\). We decompose

$$\begin{aligned} I_{\eta ,\lambda }f(x)&\equiv \int _{X {\setminus } \{x\}} \frac{f(y)}{\mu (B(x,2\lambda d(x,y)))^{1-\eta }}d\mu (y)\\&= \sum _{j=-\infty }^\infty \int _{B(x,r_j) {\setminus } B(x,r_{j-1})} \frac{f(y)}{\mu (B(x,2\lambda d(x,y)))^{1-\eta }}d\mu (y)\\&\le \sum _{j=-\infty }^\infty \int _{B(x,r_j) {\setminus } B(x,r_{j-1})}\frac{f(y)}{\mu (B(x,2\lambda r_{j-1}))^{1-\eta }}d\mu (y). \end{aligned}$$

Since \(\mu (B(x,2\lambda r_{j-1}))>2^{j-1}\) thanks to the definition of \(r_{j-1}\), we obtain

$$\begin{aligned} I_{\eta ,\lambda }f(x)&\le \sum _{j=-\infty }^\infty 2^{-(j-1)(1-\eta )} \int _{B(x,r_j) {\setminus } B(x,r_{j-1})}f(y)d\mu (y)\\&\le \sum _{j=-\infty }^\infty 2^{-(j-1)(1-\eta )} \int _{B(x,r_j)}f(y)d\mu (y). \end{aligned}$$

Since \(\mu (B(x,\lambda r_j)) \le 2^j\), we obtain

$$\begin{aligned} I_{\eta ,\lambda }f(x)&\le \sum _{j=-\infty }^\infty 2^{-(j-1)(1-\eta )} \min ( 2^{j(1-\eta +\varepsilon )}M_{\eta -\varepsilon ,\lambda }f(x), 2^{j(1-\eta -\varepsilon )}M_{\eta +\varepsilon ,\lambda }f(x))\\&\le C \sqrt{ M_{\eta -\varepsilon ,\lambda }f(x) M_{\eta +\varepsilon ,\lambda }f(x) } \end{aligned}$$

thanks to Lemma 6.1, as required. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawano, Y., Shimomura, T. Fractional Maximal Operator on Musielak–Orlicz Spaces Over Unbounded Quasi-Metric Measure Spaces. Results Math 76, 188 (2021). https://doi.org/10.1007/s00025-021-01490-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01490-7

Keywords

Mathematics Subject Classification

Navigation