Skip to main content
Log in

The Idiosyncratic Polynomial of Digraphs

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

The idiosyncratic polynomial of a graph G with adjacency matrix A is the characteristic polynomial of the matrix \( A + y(J-A-I)\), where I is the identity matrix and J is the all-ones matrix. It follows from a theorem of Hagos (2000) combined with an earlier result of Johnson and Newman (1980) that the idiosyncratic polynomial of a graph is reconstructible from the multiset of the idiosyncratic polynomial of its vertex-deleted subgraphs. For a digraph D with adjacency matrix A, we define its idiosyncratic polynomial as the characteristic polynomial of the matrix \( A + y(J-A-I)+zA^{\top }\). By forbidding two fixed digraphs on three vertices as induced subdigraphs, we prove that the idiosyncratic polynomial of a digraph is reconstructible from the ordered multiset of the idiosyncratic polynomial of its induced subdigraphs on three vertices. As an immediate consequence, the idiosyncratic polynomial of a tournament is reconstructible from the collection of its 3-cycles. Another consequence is that all the transitive orientations of a comparability graph have the same idiosyncratic polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A flag-free digraph is a digraph which contains no flags as induced subdigraphs.

  2. Throughout this paper, the characteristic polynomial of a square matrix M is the determinant of \(xI-M\).

References

  1. A. Anuradha, R. Balakrishnan, X. Chen, X. Li, H. Lian and W. So. Skew spectra of oriented bipartite graphs. The electronic journal of combinatorics, 20(4):P18, 2013.

    Article  MathSciNet  Google Scholar 

  2. J. A. Bondy and R. L. Hemminger. Graph reconstruction-a survey. Journal of Graph Theory, 1(3):227–268, 1977.

    Article  MathSciNet  Google Scholar 

  3. A. Boussaïri, P. Ille, G. Lopez and S. Thomassé. The \({C}_3\)-structure of the tournaments. Discrete mathematics, 277(1-3):29–43, 2004.

    Article  MathSciNet  Google Scholar 

  4. A. Boussaïri and B. Chergui. Skew-symmetric matrices and their principal minors. Linear Algebra and its Applications, 485:47–57, 2015.

    Article  MathSciNet  Google Scholar 

  5. B. Brešar, W. Imrich and S. Klavžar. Reconstructing subgraph-counting graph polynomials of increasing families of graphs. Discrete mathematics, 297(1-3):159–166, 2005.

    Article  MathSciNet  Google Scholar 

  6. M. Cavers, S. M. Cioabă, S. Fallat, D. A. Gregory, W. H. Haemers, S. J. Kirkland, J. J. McDonald and M. Tsatsomeros. Skew-adjacency matrices of graphs. Linear algebra and its applications, 436(12):4512–4529, 2012.

    Article  MathSciNet  Google Scholar 

  7. C. Coates. Flow-graph solutions of linear algebraic equations. IRE Transactions on circuit theory, 6(2):170–187, 1959.

    Article  Google Scholar 

  8. B. Deng, X. Li, B. Shader and W. So. On the maximum skew spectral radius and minimum skew energy of tournaments. Linear and Multilinear Algebra, 66(7):1434–1441, 2018.

    Article  MathSciNet  Google Scholar 

  9. A. Ehrenfeucht, T. Harju and G. Rozenberg. The theory of 2-structures: a framework for decomposition and transformation of graphs. World Scientific Publishing Company, 1999.

  10. R. Fraïssé. Abritement entre relations et spécialement entre chaînes. Symposia Mathematica, 203–251, 1970.

  11. D. A. Gregory, S. J. Kirkland and BL Shader. Pick’s inequality and tournaments. Linear algebra and its applications, 186:15–36, 1993.

    Article  MathSciNet  Google Scholar 

  12. M. Habib. Comparability invariants. Annals of Discrete Mathematics, 99:371–385, 1984.

    MathSciNet  MATH  Google Scholar 

  13. E. M. Hagos. The characteristic polynomial of a graph is reconstructible from the characteristic polynomials of its vertex-deleted subgraphs and their complements. The electronic journal of combinatorics, 7(1):12, 2000.

    Article  MathSciNet  Google Scholar 

  14. D. J. Hartfiel and R. Leowy. On matrices having equal corresponding principal minors. Linear algebra and its applications, 58:147–167, 1984.

    Article  MathSciNet  Google Scholar 

  15. P. Ille and J. Rampon. Reconstruction of posets with the same comparability graph. Journal of Combinatorial Theory, Series B, 74(2):368–377, 1998.

    Article  MathSciNet  Google Scholar 

  16. C. R. Johnson and M. Newman. A note on cospectral graphs. Journal of Combinatorial Theory, Series B, 28(1):96–103, 1980.

    Article  MathSciNet  Google Scholar 

  17. P. J. Kelly. A congruence theorem for trees. Pacific Journal of Mathematics, 7(1):961–968, 1957.

    Article  MathSciNet  Google Scholar 

  18. X. Li, Y. Shi and M. Trinks. Polynomial reconstruction of the matching polynomial. Electronic Journal of Graph Theory and Applications, 3(1):27–34, 2015.

    Article  MathSciNet  Google Scholar 

  19. G. Lopez. L’indéformabilité des relations et multirelations binaires. Mathematical Logic Quarterly, 24(19-24):303–317, 1978.

    Article  Google Scholar 

  20. G. E. Moorhouse. Two-graphs and skew two-graphs in finite geometries. Linear Algebra and its Applications, 226-228:529–551, 1995.

    Article  MathSciNet  Google Scholar 

  21. M. Pouzet. Application d’une propriété combinatoire des parties d’un ensemble aux groupes et aux relations. Mathematische Zeitschrift, 150(2):117–134, 1976.

    Article  MathSciNet  Google Scholar 

  22. M. Pouzet. Note sur le problème de Ulam. Journal of Combinatorial Theory, Series B, 27(3):231–236, 1979.

    Article  MathSciNet  Google Scholar 

  23. L. Rédei. Ein kombinatorischer satz. Acta Litt. Szeged, 7(39-43):97, 1934.

    Google Scholar 

  24. A. J. Schwenk. Spectral reconstruction problems, in Topics in Graph Theory (F. Harary, Ed.); Annals of the New York Academy of Sciences, 328 183–189, 1979.

  25. J. J. Seidel. A survey of two-graphs. In: Teorie Combinatorie (Proceeding Colloquio Internazionale sulle Teorie Combinatorie, Roma 1973), Accademia Nazionale dei Lincei, Roma, 1976.

  26. B. Shader and W. So. Skew spectra of oriented graphs. the electronic journal of combinatorics, 16(1):P32, 2009.

  27. P. K. Stockmeyer. The falsity of the reconstruction conjecture for tournaments. Journal of Graph Theory, 1(1):19–25, 1977.

    Article  MathSciNet  Google Scholar 

  28. P. K. Stockmeyer. A census of non-reconstructable digraphs, I: Six related families. Journal of Combinatorial Theory, Series B, 31(2):232–239, 1981.

    Article  MathSciNet  Google Scholar 

  29. W. T. Tutte. All the king’s horses. A guide to reconstruction. Graph theory and related topics, 15–33, 1979.

  30. S. M. Ulam. A collection of mathematical problems. Interscience Publishers, 1960.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Boussaïri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Ararat Harutyunyan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A The 3-Vertex Digraphs (up to Hemimorphy) and Their Idiosyncratic Polynomials

A The 3-Vertex Digraphs (up to Hemimorphy) and Their Idiosyncratic Polynomials

\( x^{3} - 3 \, y^{2} x - 2 \, y^{3} \)

\( x^{3} + \left( -2 \, y^{2} - y - z\right) x -y^{2}{\left( y + z + 1\right) } \)

\( x^{3} + \left( -y^{2} - 2 \, y - 2 \, z\right) x -y{\left( y^{2} + 2 \, y z + z^{2} + 1\right) } \)

\( x^{3} + \left( -y^{2} - 2 \, y - 2 \, z\right) x -2 \, y{\left( y + z\right) } \)

\( x^{3} + \left( -2 \, y^{2} - z^{2} - 2 \, z - 1\right) x -2 \, y^{2} {\left( z + 1\right) } \)

\( x^{3} + \left( -3 \, y - 3 \, z\right) x - y^{2} -{\left( y + z\right) } {\left( y + z + 1\right) } \)

\( x^{3} + \left( -3 \, y - 3 \, z\right) x -{\left( y + z + 1\right) }{\left( y^{2} + 2 \, y z + z^{2} - y - z + 1\right) } \)

\( x^{3} + \left( -y^{2} - z^{2} - y - 3 \, z - 1\right) x -y {\left( z + 1\right) }{\left( y + z + 1\right) } \)

\( x^{3} + \left( -z^{2} - 2 \, y - 4 \, z - 1\right) x -2 \, {\left( y + z\right) } {\left( z + 1\right) } \)

\( x^{3} + \left( -z^{2} - 2 \, y - 4 \, z - 1\right) x -{\left( z + 1\right) }{\left( y^{2} + 2 \, y z + z^{2} + 1\right) } \)

\( x^{3} + \left( -y^{2} - 2 \, z^{2} - 4 \, z - 2\right) x -2 \, y {\left( z + 1\right) }^{2} \)

\( x^{3} + \left( -2 \, z^{2} - y - 5 \, z - 2\right) x -{\left( y + z + 1\right) } {\left( z + 1\right) }^{2} \)

\( x^{3} + \left( -3 \, z^{2} - 6 \, z - 3\right) x -2 \, {\left( z + 1\right) }^{3} \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankoussou-mabiala, E., Boussaïri, A., Chaïchaâ, A. et al. The Idiosyncratic Polynomial of Digraphs. Ann. Comb. 26, 329–344 (2022). https://doi.org/10.1007/s00026-022-00572-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-022-00572-9

Keywords

Mathematics Subject Classification

Navigation