Skip to main content

Advertisement

Log in

Stable isotopes reveal food web modifications along the upstream–downstream gradient of a temperate stream

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The upstream–downstream gradient (UDG) is a key feature of streams. For instance food webs are assumed to change from upstream to downstream. We tested this hypothesis in a small European river catchment (937 km2), and examined whether food web modifications are related to structural (i.e. food web composition) or functional changes (i.e. alteration of linkages within the web). We adopted a double approach at two levels of organisation (assemblage and species levels) using two isotopic metrics (isotopic space area and isotopic niche overlap), and proposed a new hypothesis-testing framework for exploring the dominant feeding strategy within a food web. We confirmed that the UDG influenced stream food webs, and found that food web modifications were related to both structural and functional changes. The structural change was mainly related to an increase in species richness, and induced functional modifications of the web (indirect effect). In addition, the UDG also modified the functional features of the web directly, without changing the web composition. The proposed framework allowed relating the direct effect of the UDG to a diet specialisation of the species, and the indirect effect via the structural changes to a generalist feeding strategy. The framework highlights the benefits of conducting the double approach, and provides a foundation for future studies investigating the dominant feeding strategy that underlies food web modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • A.F.S. (American_Fisheries_Society) (2004) A.I.o.F.R.B. (American_Institute_of_Fishery_Research_Biologists), A.S.o.I.a.H. (American_Society_of_Ichtyologists_and_Herpetologists). Guidelines for the Use of Fishes in Research. American Fisheries Society, Bethesda, MA

  • Araújo M, Bolnick D, Layman C (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958. doi:10.1111/j.1461-0248.2011.01662.x

    Article  PubMed  Google Scholar 

  • Arim M, Abades S, Laufer G, Loureiro M, Marquet P (2010) Food web structure and body size: trophic position and resource acquisition. Oikos 119:147–153. doi:10.1111/j.1600-0706.2009.17768.x

    Article  Google Scholar 

  • Bearhop S, Adams C, Waldron S, Fuller R, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012. doi:10.1111/j.0021-8790.2004.00861.x

    Article  Google Scholar 

  • Belliard J, Boët P, Tales E (1997) Regional and longitudinal patterns of fish community structure in the Seine river basin, France. Environ Biol Fish 50:133–147. doi:10.1023/A:1007353527126

    Article  Google Scholar 

  • Chang HY, Wu SH, Shao KT, Kao WY, Maa CJ, Jan RQ, Liu LL, Tzeng CS, Hwang JS, Hsieh HL, Kao SJ, Chen YK, Lin HJ (2012) Longitudinal variation in food sources and their use by aquatic fauna along a subtropical river in taiwan. Freshw Biol 57:1839–1853. doi:10.1111/j.1365-2427.2012.02843.x

    Article  Google Scholar 

  • Costas N, Pardo I (2014) Isotopic variability in a stream longitudinal gradient: implications for trophic ecology. Aquat Sci. doi:10.1007/s00027-014-0383-2

    Google Scholar 

  • Gause G (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Hammerschlag-Peyer CM, Yeager LA, Araújo MS, Layman CA (2011) A hypothesis-testing framework for studies investigating ontogenetic niche shifts using stable isotope ratios. PLoS One 6:e27104. doi:10.1371/journal.pone.0027104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hette-Tronquart N, Mazeas L, Reuilly-Manenti L, Zahm A, Belliard J (2012) Fish fins as non-lethal surrogates for muscle tissues in freshwater food web studies using stable isotopes. Rapid Commun Mass Spectrom 26:1603–1608. doi:10.1002/rcm.6265

    Article  PubMed  Google Scholar 

  • Hoeinghaus D, Zeug S (2008) Can stable isotope ratios provide for community-wide measures of trophic structure? Comment. Ecol 89:2353–2357. doi:10.1890/07-1143.1

    Article  Google Scholar 

  • Holt R (1996) Food webs: integration of patterns and dynamics. Temporal and spatial aspects of food web structure and dynamics. Chapman & Hall, New York, pp 255–257

    Google Scholar 

  • Ibañez C, Oberdorff T, Teugels G, Mamononekene V, Lavoué S, Fermon Y, Paugy D, Toham A (2007) Fish assemblages structure and function along environmental gradients in rivers of Gabon (Africa). Ecol Freshw Fish 16:315–334. doi:10.1111/j.1600-0633.2006.00222.x

    Article  Google Scholar 

  • Ibañez C, Belliard J, Hughes R, Irz P, Kamdem-Toham A, Lamouroux N, Tedesco P, Oberdorff T (2009) Convergence of temperate and tropical stream fish assemblages. Ecograph 32:658–670. doi:10.1111/j.1600-0587.2008.05591.x

    Article  Google Scholar 

  • Jackson A, Inger R, Parnell A, Bearhop S (2011) Comparing isotopic niche widths among and within communities: siber-stable isotope bayesian ellipses in R. J Anim Ecol 80:595–602. doi:10.1111/j.1365-2656.2011.01806.x

    Article  PubMed  Google Scholar 

  • Jackson MC, Donohue I, Jackson AL, Britton JR, Harper DM, Grey J (2012) Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7:e31757. doi:10.1371/journal.pone.0031757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jepsen D, Winemiller K (2002) Structure of tropical river food webs revealed by stable isotope ratios. Oikos 96:46–55. doi:10.1034/j.1600-0706.2002.960105.x

    Article  Google Scholar 

  • Layman C, Arrington D, Montaña C, Post D (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecol 88:42–48. doi:10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2

  • Layman C, Araújo M, Boucek R, Hammerschlag-Peyer C, Harrison E, Jud Z, Matich P, Rosenblatt A, Vaudo J, Yeager L, Post D, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562. doi:10.1111/j.1469-185X.2011.00208.x

    Article  PubMed  Google Scholar 

  • MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609

    Article  Google Scholar 

  • MacGarvey D, Hughes R (2008) Longitudinal zonation of pacific northwest (U.S.A.) fish assemblages and the species-discharge relationship. Copeia 2:311–321. doi:10.1643/CE-07-020

    Article  Google Scholar 

  • Mason N, Lanoiselée C, Mouillot D, Wilson J, Argillier C (2008) Does niche overlap control relative abundance in french lacustrine fish communities? A new method incorporating functional traits. J Anim Ecol 77:661–669. doi:10.1111/j.1365-2656.2008.01379.x

    Article  PubMed  Google Scholar 

  • Matthews W (1998) Patterns in freshwater fish ecology. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  • Minns CK (1995) Allometry of home range size in lake and river fishes. Can J Fish Aquat Sci 52:1499–1508

    Article  Google Scholar 

  • Newsome S, Del Rio C, Bearhop S, Phillips D (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436. doi:10.1890/1540-9295(2007)5[429:ANFIE]2.0.CO;2

  • O’Neil B, Thorp J (2014) Untangling food-web structure in an ephemeral ecosystem. Freshw Biol 59:1462–1473. doi:10.1111/fwb.12358

    Article  Google Scholar 

  • Oberdorff T, Guilbert E, Lucchetta JC (1993) Patterns of fish species richness in the Seine river basin, France. Hydrobiol 259:157–167. doi:10.1007/BF00006595

    Article  Google Scholar 

  • Oberdorff T, Pont D, Hugueny B, Chessel D (2001) A probabilistic model characterizing riverine fish communities of French rivers: a framework for environmental assessment. Freshw Biol 46:399–415. doi:10.1046/j.1365-2427.2001.00669.x

    Article  Google Scholar 

  • Oberdorff T, Pont D, Hugueny B, Porcher J (2002) Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshw Biol 47:1720–1734. doi:10.1046/j.1365-2427.2002.00884.x

    Article  Google Scholar 

  • Petts G, Calow P (1996) River biota: diversity and dynamics. Blackwell Science, Oxford

    Google Scholar 

  • Post D, Takimoto G (2007) Proximate structural mechanisms for variation in food-chain length. Oikos 116:775–782. doi:10.1111/j.2007.0030-1299.15552.x

    Article  Google Scholar 

  • Post D, Layman C, Arrington D, Takimoto G, Quattrochi J, Montaña C (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. doi:10.1007/s00442-006-0630-x

    Article  PubMed  Google Scholar 

  • Power M, Dietrich W (2002) Food webs in river networks. Ecol Res 17:451–471. doi:10.1046/j.1440-1703.2002.00503.x

    Article  Google Scholar 

  • Rasmussen J, Trudeau V, Morinville G (2009) Estimating the scale of fish feeding movements in rivers using δ13C signature gradients. J Anim Ecol 78:674–685. doi:10.1111/j.1365-2656.2008.01511.x

    Article  PubMed  Google Scholar 

  • Rice S, Greenwood M, Joyce C (2001) Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. Can J Fish Aquat Sciences 58:824–840. doi:10.1139/cjfas-58-4-824

    Article  Google Scholar 

  • Sabo J, Finlay J, Kennedy T, Post D (2010) The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330:965–967. doi:10.1126/science.1196005

    Article  CAS  PubMed  Google Scholar 

  • Sedell J, Richey J, Swanson F (1989) The river continuum concept: a basis for the expected ecosystem behaviour of very large rivers? Can Spec Publ Fish Aquat Sci 106:49–55

    Google Scholar 

  • Semmens B, Ward E, Moore J, Darimont C (2009) Quantifying inter-and intra-population niche variability using hierarchical bayesian stable isotope mixing models. PLoS One 4. doi:10.1371/journal.pone.0006187

  • Syväranta J, Lensu A, Marjomäki T, Oksanen S, Jones R (2013) An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS One 8. doi:10.1371/journal.pone.0056094

  • Thompson R, Brose U, Dunne J, Hall R, Hladyz S, Kitching R, Martinez N, Rantala H, Romanuk T, Stouffer D, Tylianakis J (2012) Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 27:689–697. doi:10.1016/j.tree.2012.08.005

    Article  PubMed  Google Scholar 

  • Tomanova S, Tedesco P, Campero M, Van Damme P, Moya N, Oberdorff T (2007) Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: a test of the river continuum concept. Fundam Appl Limnol 170:233–241. doi:10.1127/1863-9135/2007/0170-0233

    Article  Google Scholar 

  • Townsend C, Hildrew A (1994) Species traits in relation to a habitat templet for river systems. Freshw Biol 31:265–275

    Article  Google Scholar 

  • Vander Zanden M, Rasmussen J (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecol 80:1395–1404

    Article  Google Scholar 

  • Vannote R, Minshall G, Cummins K, Sedell J, Cushing C (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Verneaux J, Schmitt A, Verneaux V, Prouteau C (2003) Benthic insects and fish of the doubs river system: typological traits and the development of a species continuum in a theoretically extrapolated watercourse. Hydrobiol 490:63–74. doi:10.1023/A:1023454227671

    Article  Google Scholar 

  • Werner R, Brand W (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom 15:501–519. doi:10.1002/rcm.258

    Article  CAS  PubMed  Google Scholar 

  • Winemiller K, Hoeinghaus D, Pease A, Esselman P, Honeycutt R, Gbanaador D, Carrera E, Payne J (2011) Stable isotope analysis reveals food web structure and watershed impacts along the fluvial gradient of a mesoamerican coastal river. River Res Appl 27:791–803. doi:10.1002/rra.1396

    Article  Google Scholar 

  • Wootton J (1994) Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecol 75:151–165

    Article  Google Scholar 

Download references

Acknowledgments

Grateful acknowledgment is expressed to HEF team (part of Hydrosystems and Bioprocesses Research Unit at Irstea Antony) for assistance in the field and sample preparation. We thank Adrien Rey and the regional natural park “Parc Naturel Régional de la haute vallée de Chevreuse” for advice and participation to field work. Olivier Delaigue gave helpful recommendations for statistical analyses. Michel Hénin, head of the RGIS department at the “Institut d’Aménagement et d’Urbanisme d’île-de-France’’ kindly provided the land cover data. We thank the anonymous reviewers, who helped improve the previous versions of this manuscript. This work was partly funded by the Interdisciplinary Research Program on the Seine River Environment (PIREN-Seine—http://www.sisyphe.upmc.fr/piren/) and by the project 33 of the framework agreement between Irstea and the French National Agency for Water and Aquatic Environments (ONEMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Hette-Tronquart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hette-Tronquart, N., Belliard, J., Tales, E. et al. Stable isotopes reveal food web modifications along the upstream–downstream gradient of a temperate stream. Aquat Sci 78, 255–265 (2016). https://doi.org/10.1007/s00027-015-0421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0421-8

Keywords

Navigation