Skip to main content

Advertisement

Log in

High export of nitrogen and dissolved organic carbon from an Alpine glacier (Indren Glacier, NW Italian Alps)

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Mountain glaciers can export large amounts of nitrogen (N) and carbon (C) to downstream aquatic ecosystems. To date, however, the number of studies that analysed concentrations and fluxes of N forms and dissolved organic carbon (DOC) from glaciers in the European Alps and worldwide is limited, given the high complexity of data gathering in harsh high-elevation environments. In this work, we rely upon new, unexploited data from field campaigns pursued during 2012–2015 at high elevations (> 3000 m a.s.l.) of the Indren Glacier (NW Italian Alps) to (1) develop glacio-hydrological modelling and stream flow estimates within a heavily glacier-fed catchment, (2) provide N forms and DOC concentrations and estimated fluxes in meltwater, and (3) provide possible explanations of cryospheric control upon water chemistry. Water and soil samples were also collected at two lower-elevation sites along the glacial stream to investigate the downstream variability of N forms and DOC. Nitrate-N, dissolved organic nitrogen, and DOC concentrations (0.21 ± 0.12, 0.19 ± 0.14, 1.16 ± 0.63 mg L−1, respectively) and yields (220, 210, 1279 kg km−2 year−1, respectively) were among the highest considering other glaciated areas of the globe, probably due to high atmospheric N and C depositions. Limited effect of soil on water characteristics was found and attributed to the reduced soil development in recently deglaciated areas (after the Little Ice Age), thus underlining the role of glacier melting in determining N and C dynamics in high-elevation, Alpine surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balestrini R, Arese C, Freppaz M, Buffagni A (2013) Catchment features controlling nitrogen dynamics in running waters above the tree line (central Italian Alps). Hydrol Earth Syst Sci 17:989–1001

    CAS  Google Scholar 

  • Balestrini R, Polesello S, Sacchi E (2014) Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins. Sci Total Environ 485–486:681–692

    PubMed  Google Scholar 

  • Barnes RT, Williams MW, Parman JN, Hill K, Caine N (2014) Thawing glacial and permafrost features contribute to nitrogen export from Green Lakes Valley, Colorado Front Range, USA. Biogeochemistry 117:413–430

    CAS  Google Scholar 

  • Baron JS, Rueth HM, Wolfe AM, Nydick KR, Allstott EJ, Toby Minear J et al (2000) Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3(4):352–368

    CAS  Google Scholar 

  • Baron JS, Schmidt TM, Hartman MD (2009) Climate-induced changes in high elevation stream nitrate dynamics. Glob Change Biol 15:1777–1789

    Google Scholar 

  • Baroni C, Bondesan A, Mortara G (2014) Report of the glaciological survey 2013. Geografia Fisica e Dinamica Quaternaria 37:163–227

    Google Scholar 

  • Bhatia M, Das SB, Longnecker K, Charette MA, Kujawinski EB (2010) Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim Cosmochim Acta 74:3768–3784

    CAS  Google Scholar 

  • Bhatia MP, Das SB, Xu L, Charette MA, Wadham JL, Kujawinski EB (2013) Organic carbon export from the Greenland ice sheet. Geochim Cosmochim Acta 109:329–344

    CAS  Google Scholar 

  • Bocchiola D, Mihalcea C, Diolaiuti G, Mosconi B, Smiraglia C, Rosso R (2010) Flow prediction in high altitude ungauged catchments: a case study in the Italian Alps (Pantano Basin, Adamello Group). Adv Water Resour 33:1224–1234

    Google Scholar 

  • Boyd ES, Lange RK, Mitchell AC, Havig JR, Hamilton TL, Lafrenière MJ et al (2011) Diversity, abundance, and potential activity of a nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol 77:4778–4787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brighenti S, Tolotti M, Bruno MC, Wharton G, Pusch MT, Bertoldi W (2019) Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: a review. Sci Total Environ 20(675):542–559

    Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113

    Google Scholar 

  • Brown LE, Hannah DM, Milner AM, Soulsby C, Hodson AJ, Brewer MJ (2006) Water source dynamics in a glacierized alpine river basin (Taillon-Gabietous, French Pyrenees). Water Resour Res 42:W08404. https://doi.org/10.1029/2005WR004268

    Article  CAS  Google Scholar 

  • CGI-CNR - Comitato Glaciologico Italiano & Consiglio Nazionale delle Ricerche (1961) Catasto dei Ghiacciai Italiani, Anno Geofisico Internazionale 1957-1958, Ghiacciai del Piemonte, vol. 2. Comitato Glaciologico Italiano, Torino

  • Clow DW, Sueker JK (2000) Relations between basin characteristics and stream water chemistry in alpine/subalpine basins in Rocky Mountain National Park, Colorado. Water Resour Res 36(1):49–61

    CAS  Google Scholar 

  • Colombo N, Giaccone E, Paro L, Buffa G, Fratianni S (2016a) Recent transition from glacial to periglacial environment in a high altitude alpine basin (Sabbione basin, north-western Italian Alps). Preliminary outcomes from a multidisciplinary approach. Geografia Fisica e Dinamica Quaternaria 39(1):21–36

    Google Scholar 

  • Colombo N, Paro L, Godone D, Fratianni S (2016b) Geomorphology of the Hohsand basin (Western Italian Alps). J Maps 12(5):975–978

    Google Scholar 

  • Colombo N, Salerno F, Martin M, Malandrino M, Giardino M, Serra E et al (2019) Influence of permafrost, rock and ice glaciers on chemistry of high-elevation ponds (NW Italian Alps). Sci Total Environ 685:886–901

    CAS  PubMed  Google Scholar 

  • Cooper RJ, Wadham JL, Tranter M, Hodgkins R, Peters N (2002) Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard. J Hydrol 269:208–223

    CAS  Google Scholar 

  • Daly GL, Wania F (2005) Organic contaminants in mountains. Environ Sci Technol 39(2):385–398

    CAS  PubMed  Google Scholar 

  • Di Mauro B, Garzonio R, Rossini M, Filippa G, Pogliotti P, Galvagno M et al (2019) Saharan dust events in the European Alps: role in snowmelt and geochemical characterization. Cryosphere 13:1147–1165

    Google Scholar 

  • Diémoz H, Barnaba F, Magri T, Pession G, Dionisi D, Pittavino S et al (2019) Transport of Po Valley aerosol pollution to the northwestern Alps—Part 1: phenomenology. Atmos Chem Phys 19:3065–3095

    Google Scholar 

  • FAO (2006) Guidelines for soil description, 4th edn. FAO, Rome

    Google Scholar 

  • Fellman JB, Hood E, Raymond PA, Hudson J, Bozeman M, Arimitsu M (2015) Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web. Limnol Oceanogr 60(4):1118–1128

    CAS  Google Scholar 

  • Fenn ME, Haeuber R, Tonnesen GS, Baron JS, Grossman-Clarke S, Hope D et al (2003) Nitrogen emissions, deposition and monitoring in the Western United States. Bioscience 53:391–403

    Google Scholar 

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ et al (2004) Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47(4):329–340

    CAS  PubMed  Google Scholar 

  • Fratianni S, Colombo N, Giaccone E, Acquaotta F, Garzena D, Godone D et al (2015) Effets du changement climatique sur la dégradation du pergélisol dans le N-O de l’Italie: Résultats préliminaires. XXVIIIe Colloque de l’Association Internationale de Climatologie

  • Gabbi J, Huss M, Bauder A, Cao F, Schwikowski M (2015) The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier. Cryosphere 9:1385–1400

    Google Scholar 

  • Giaccone E, Colombo N, Acquaotta F, Paro L, Fratianni S (2015) Climate variations in a high altitude Alpine basin and their effects on a glacial environment (Italian Western Alps). Atmósfera 28(2):117–128

    Google Scholar 

  • Groppelli B, Soncini A, Bocchiola D, Rosso R (2011) Evaluation of future hydrological cycle under climate change scenarios in a mesoscale Alpine watershed of Italy. Nat Hazards Earth Syst Sci 11:1769–1785

    Google Scholar 

  • Haugland JE (2004) Formation of patterned ground and fine-scale soil development within two late Holocene glacial chronosequences: Jotunheimen, Norway. Geomorphology 61:287–301

    Google Scholar 

  • Hood E, Scott D (2008) Riverine organic matter and nutrients in southeast Alaska affected by glacial coverage. Nat Geosci 1:583–587

    CAS  Google Scholar 

  • Hood E, Williams MW, Caine N (2003) Landscape controls on organic and inorganic nitrogen leaching across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range. Ecosystems 6(1):31–45

    CAS  Google Scholar 

  • Hood E, Fellman J, Spencer RGM, Hernes PJ, Edwards R, D’Amore D et al (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462:1044–1047

    CAS  PubMed  Google Scholar 

  • Hood E, Battin TJ, Fellman J, O’Neel S, Spencer RGM (2015) Storage and release of organic carbon from glaciers and ice sheets. Nat Geosci 8(2):91–96

    CAS  Google Scholar 

  • Hubbard B, Nienow P (1997) Alpine subglacial hydrology. Quat Sci Rev 16:939–955

    Google Scholar 

  • Iavorivska L, Boyer EW, DeWalle DR (2016) Atmospheric deposition of organic carbon via precipitation. Atmos Environ 146:153–163

    CAS  Google Scholar 

  • Lafrenière MJ, Sharp MJ (2004) The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and non-glacial catchments: interpreting hydrological flow routing and DOC sources. Arct Antarct Alp Res 36(2):156–165

    Google Scholar 

  • Lafrenière MJ, Sharp MJ (2005) A comparison of solute fluxes and sources from glacial and non-glacial catchments over contrasting melt seasons. Hydrol Process 19:2991–3012

    Google Scholar 

  • Lami A, Marchetto A, Musazzi S, Salerno F, Tartari G, Guilizzoni P et al (2010) Chemical and biological response of two small lakes in the Khumbu Valley, Himalayas (Nepal) to short-term variability and climatic change as detected by long-term monitoring and paleolimnological methods. Hydrobiologia 648:189–205

    Google Scholar 

  • Li X, Ding Y, Xu J, He X, Han T, Kang S et al (2018) Importance of mountain glaciers as a source of dissolved organic carbon. J Geophys Res Earth Surf 123:2123–2134

    CAS  Google Scholar 

  • Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169–172

    CAS  Google Scholar 

  • Maggioni M, Freppaz M, Piccini P, Williams M, Zanini E (2009) Snow cover effects on glacier ice surface temperature. Arct Antarct Alp Res 41(3):323–329

    Google Scholar 

  • Magnani A, Viglietti D, Balestrini R, Williams MW, Freppaz M (2017) Contribution of deeper soil horizons to N and C cycling during the snow-free season in alpine tundra, NW Italy. CATENA 155:75–85

    CAS  Google Scholar 

  • McClelland JW, Townsend-Small A, Holmes RM, Pan F, Stieglitz M, Khosh M et al (2014) River export of nutrients and organic matter from the North Slope of Alaska to the Beaufort Sea. Water Resour Res 50:1823–1839

    CAS  Google Scholar 

  • Milner AM, Khamis K, Battin TJ, Brittain JE, Barrand NE, Füreder L et al (2017) Glacier shrinkage driving global changes in downstream systems. Proc Natl Acad Sci USA 114(37):9770–9778

    CAS  PubMed  Google Scholar 

  • Mladenov N, Williams MW, Schmidt SK, Cawley K (2012) Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains. Biogeosciences 9:3337–3355

    CAS  Google Scholar 

  • Musilova M, Tranter M, Wadham J, Telling J, Tedstone J, Anesio AM (2017) Microbially driven export of labile organic carbon from the Greenland ice sheet. Nat Geosci 10(5):360–365

    CAS  Google Scholar 

  • Piccini P (2007) Ghiacciai in Valsesia. Edizioni Società Meteorologica Subalpina, Bussoleno

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Rogora M, Massaferro J, Marchetto A, Tartari G, Mosello R (2008) The water chemistry of some shallow lakes in Northern Patagonia and their nitrogen status in comparison with remote lakes in different regions of the globe. J Limnol 67(2):75–86

    Google Scholar 

  • Rogora M, Colombo L, Lepori F, Marchetto A, Steingruber S, Tornimbeni O (2013) Thirty years of chemical changes in alpine acid-sensitive lakes in the Alps. Water Air Soil Pollut 224:1746. https://doi.org/10.1007/s11270-013-1746-3

    Article  CAS  Google Scholar 

  • Salerno F, Thakuri S, Guyennon N, Viviano G, Tartari G (2016) Glacier melting and precipitation trends detected by surface area changes in Himalayan ponds. Cryosphere 10(4):1433–1448

    Google Scholar 

  • Saros JE, Rose KC, Clow DW, Stephens VC, Nurse AB, Arnett HA et al (2010) Melting alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environ Sci Technol 44(13):4891–4896

    CAS  PubMed  Google Scholar 

  • Singer GA, Fasching C, Wilhelm L, Niggemann J, Steier P, Dittmar T et al (2012) Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nat Geosci 5:710–714

    CAS  Google Scholar 

  • Skidmore M, Anderson SP, Sharp MJ, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes in an alpine catchment. Appl Environ Microbiol 71(11):6986–6997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slemmons KE, Saros JE (2012) Implications of nitrogen-rich glacial meltwater for phytoplankton diversity and productivity in alpine lakes. Limnol Oceanogr 57(6):1651–1663

    CAS  Google Scholar 

  • Slemmons KE, Saros JE, Simon K (2013) The influence of glacial meltwater on alpine aquatic ecosystems: a review. Environ Sci Process Impacts 15:1794–1806

    CAS  PubMed  Google Scholar 

  • Slemmons KE, Rodgers ML, Stone JR, Saros JE (2017) Nitrogen subsidies in glacial meltwaters have altered planktonic diatom communities in lakes of the US Rocky Mountains for at least a century. Hydrobiologia 800(1):129–144

    CAS  Google Scholar 

  • Soncini A, Bocchiola D, Confortola G, Bianchi A, Rosso R, Mayer C et al (2015) Future hydrological regimes in the upper Indus basin: a case study from a high altitude glacierized catchment. J Hydrometeorol 16(1):306–326

    Google Scholar 

  • Soncini A, Bocchiola D, Azzoni RS, Diolaiuti GA (2017) A methodology for monitoring and modeling of high altitude Alpine catchments. Prog Phys Geogr 41(4):393–420

    Google Scholar 

  • Spencer RGM, Vermilyea A, Fellman J, Raymond P, Stubbins A, Scott D et al (2014) Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources. Environ Res Lett 9(5):055005. https://doi.org/10.1088/1748-9326/9/5/055005

    Article  CAS  Google Scholar 

  • Stachnik L, Majchrowska E, Yde JC, Nawrot AP, Cichała-Kamrowska K, Ignatiuk D et al (2016) Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard. J Hydrol 538:177–193

    CAS  Google Scholar 

  • Stahl K, Moore RD, Shea JM, Hutchinson D, Cannon AJ (2008) Coupled modelling of glacier and streamflow response to future climate scenarios. Water Resour Res 44(2):W02422. https://doi.org/10.1029/2007WR005956

    Article  Google Scholar 

  • Stibal M, Tranter M, Benning LG, Řehák J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 10:2172–2178

    CAS  PubMed  Google Scholar 

  • Stibal M, Šabacká M, Žárský J (2012a) Biological processes on glacier and ice sheet surfaces. Nat Geosci 5(11):771–774

    CAS  Google Scholar 

  • Stibal M, Wadham JL, Lis GP, Telling J, Pancost RD, Dubnick Ashley et al (2012b) Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Glob Change Biol 18:3332–3345

    Google Scholar 

  • Stubbins A, Hood E, Raymond PA, Aiken GR, Sleighter RL, Hernes PJ et al (2012) Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nat Geosci 5(3):198–201

    CAS  Google Scholar 

  • Theakstone WH, Knudsen NT (1996) Isotopic and ionic variations in glacier river water during three contrasting ablation seasons. Hydrol Process 10:523–539

    Google Scholar 

  • Tockner K, Malard F, Uehlinger U, Ward JV (2002) Nutrients and organic matter in a glacial river–floodplain system (Val Roseg, Switzerland). Limnol Oceanogr 47(1):266–277

    CAS  Google Scholar 

  • Tranter M (2006) Glacial chemical weathering, runoff composition and solute fluxes. In: Knight PG (ed) Glacier science and environmental change. Wiley-Blackwell, New York, pp 71–75

    Google Scholar 

  • Tranter M, Brown GH, Raiswell R, Sharp M, Gurnell A (1993) A conceptual model of solute acquisition by Alpine glacial meltwaters. J Glaciol 39:573–581

    CAS  Google Scholar 

  • Tranter M, Sharp MJ, Brown GH, Willis IC, Hubbard BP, Nielsen MK et al (1997) Variability in the chemical composition of in situ subglacial meltwaters. Hydrol Process 11:59–77

    Google Scholar 

  • Tranter M, Sharp MJ, Lamb HR, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut Glacier d’Arolla. Switzerland - a new model. Hydrol Process 16:959–993

    Google Scholar 

  • Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF et al (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol Earth Syst Sci 15:471–504

    Google Scholar 

  • Wadham JL, Tranter M, Hodson AJ, Hodgkins R, Bottrell S, Cooper R et al (2010) Hydro-biogeochemical coupling beneath a large polythermal Arctic glacier: implications for subice sheet biogeochemistry. J Geophys Res 115:F04017. https://doi.org/10.1029/2009JF001602

    Article  CAS  Google Scholar 

  • Wadham JL, Hawkings J, Telling J, Chandler D, Alcock J, O’Donnell E et al (2016) Sources, cycling and export of nitrogen on the Greenland Ice Sheet. Biogeosciences 13:6339–6352

    CAS  Google Scholar 

  • Warner KA, Saros JE, Simon KS (2017) Nitrogen subsidies in glacial meltwater: implications for high elevation aquatic chains. Water Resour Res 53(11):9791–9806

    CAS  Google Scholar 

  • Williams MW, Davinroy T, Brooks PD (1997) Organic and inorganic nitrogen pools in talus fields and subtalus water, Green Lakes Valley, Colorado Front Range. Hydrol Process 11:1747–1760

    Google Scholar 

  • Williams MW, Knauf M, Cory R, Caine N, Liu N (2007) Nitrate content and potential microbial signature of rock glacier outflow, Colorado Front Range. Earth Surf Proc Land 32:1032–1047

    Google Scholar 

  • Williams MW, Seibold C, Chowanski K (2009) Storage and release of solutes from a subalpine seasonal snowpack: soil and stream water response, Niwot Ridge, Colorado. Biogeochemistry 95:77–94

    CAS  Google Scholar 

  • Wynn PM, Hodson AJ, Heaton THE, Chenery SR (2007) Nitrate production beneath a high arctic glacier, Svalbard. Chem Geol 244:88–102

    CAS  Google Scholar 

  • Yan F, Kang S, Li C, Zhang Y, Qin X, Li Y (2016) Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau. Cryosphere 10:2611–2621

    Google Scholar 

  • Yde JC, Tvis Knudsen N, Hasholt B, Mikkelsen AB (2014) Meltwater chemistry and solute export from a Greenland Ice Sheet catchment, Watson River, West Greenland. J Hydrol 519:2165–2179

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Eng. Andrea Soncini, Emil Squinobal, Elena Serra, Davide Viglietti, Emanuele Pintaldi and Marco Prati for their help in fieldwork and laboratory activities. We give special thanks to Consorzio di Miglioramento Fondiario di Gressoney (Aosta), Monterosaski, and Monterosa 2000. Fondazione Montagna Sicura is also kindly acknowledged for supporting with ice ablation data. This research was supported by the I CARE Project (Impact of Climate change on Alpine water REsources: the case of Italy and Switzerland) funded under Politecnico5xMille Scheme 2009 and partly by the European Regional Development Fund in Interreg Alpine Space project Links4Soils (ASP399): Caring for Soil-Where Our Roots Grow. Finally, the editor and anonymous reviewers provided valuable feedback and input during the review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Colombo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, N., Bocchiola, D., Martin, M. et al. High export of nitrogen and dissolved organic carbon from an Alpine glacier (Indren Glacier, NW Italian Alps). Aquat Sci 81, 74 (2019). https://doi.org/10.1007/s00027-019-0670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-019-0670-z

Keywords

Navigation