Skip to main content
Log in

Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We study the long-time asymptotics of the doubly nonlinear diffusion equation \({\rho_t={\rm div}(|\nabla\rho^m |^{p-2} \nabla\left(\rho^m\right))}\) in \({\mathbb{R}^n}\), in the range \({\frac{n-p}{n(p-1)} < m < \frac{n-p+1}{n(p-1)}}\) and 1 < p < ∞ where the mass of the solution is conserved, but the associated energy functional is not displacement convex. Using a linearisation of the equation, we prove an L 1-algebraic decay of the non-negative solution to a Barenblatt-type solution, and we estimate its rate of convergence. We then derive the nonlinear stability of the solution by means of some comparison method between the nonlinear equation and its linearisation. Our results cover the exponent interval \({\frac{2n}{n+1} < p < \frac{2n+1}{n+1}}\) where a rate of convergence towards self-similarity was still unknown for the p-Laplacian equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agueh M. (2003) Asymptotic behavior for doubly degenerate parabolic equations. C. R. Math. Acad. Sci. Paris, Ser. I 337: 331–336

    MATH  MathSciNet  Google Scholar 

  2. Agueh M. (2005) Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv. Differential Equations., Vol. 10 3: 309–360

    MathSciNet  Google Scholar 

  3. Agueh M. (2008) Rates of decay to equilibria for p-Laplacian type equations. Nonlinear Analysis 68: 1909–1927

    Article  MATH  MathSciNet  Google Scholar 

  4. Barenblatt G.I. (1952) On self-similar motions of compressible fluids in porous media. Prikl. Math. 16: 679–698 (in Russian)

    MATH  MathSciNet  Google Scholar 

  5. Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vázquez J.L. (2007) Hardy-Poincaré inequalities and applications to nonlinear diffusions. C. R. math. Acad. Sci. Paris. 344: 431–436

    MATH  MathSciNet  Google Scholar 

  6. A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, J. L. Vázquez, Asymptotic of the fast diffusion equation via entropy estimates, to appear in Arch. Rational. Mech. Anal.

  7. Bonforte M., Vázquez J.L. (2006) Global positivity estimates and Harnack inequalities for the fast diusion equation. J. Funct. Anal. 240: 399–428

    Article  MATH  MathSciNet  Google Scholar 

  8. Calvo N., Díaz J.I., Durany J., Schiavi E., Vázquez C. (2002) On a doubly nonlinear parabolic obstacle problem modeling ice sheet dynamics. SIAM J. App. Math. 63: 683–707

    MATH  Google Scholar 

  9. Carrillo J.A., Toscani G. (2000) Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. math. J. 49: 113–141

    Article  MATH  MathSciNet  Google Scholar 

  10. Carrillo J.A., Lederman C., Markowich P.A., Toscani G. (2002) Poincaré inequalities for linearization of very fast diffusion equations. Nonlinearity 15: 565–580

    Article  MATH  MathSciNet  Google Scholar 

  11. Carrillo J.A., Vázquez J.L. (2003) Fine asymptotics for fast diffusion equations. Comm. Partial Differential Equations 28: 1023–1056

    Article  MATH  MathSciNet  Google Scholar 

  12. Denzler J., McCann R.J. (2006) Fast diffusion to self-similarity: complete spectrum, long time asymptotics and numerology. Arch. Rational Mech. Anal. 179: 217–263

    Article  Google Scholar 

  13. DiBenedetto E. (1993) Degenerate parabolic equations. Springer-Verlag, Berlin Heidelberg New York

    MATH  Google Scholar 

  14. DiBenedetto E., Herrero M.A. (1990) Nonnegative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 < p < 2. Arch. Rational Mech. Anal. 111: 225–290

    Article  MATH  MathSciNet  Google Scholar 

  15. DiBenedetto E., Herrero M.A. (1989) On the Cauchy problem and initial traces for a degenerate parabolic equation. Trans. Amer. Math. Soc. 314(no. 1): 187–224

    Article  MATH  MathSciNet  Google Scholar 

  16. Dolbeault J., Del Pino M. (2002) Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81: 847–875

    MATH  MathSciNet  Google Scholar 

  17. Del Pino M., Dolbeault J. (2002) Nonlinear diffusion and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving p-Laplacian. C. R. Math. Acad. Sci. Paris, Ser. I 334: 365–370

    MATH  MathSciNet  Google Scholar 

  18. Del Pino M., Dolbeault J. (2003) Asymptotic behaviour of nonlinear diffusions. Math. Res. Lett. 10(4): 551–557

    MATH  MathSciNet  Google Scholar 

  19. Friedmann A., Kamin S. (1980) The asymptotic behaviour of gas in a n-dimensional porous media. Trans. Amer. Math. Soc. 262(2): 551–563

    Article  MathSciNet  Google Scholar 

  20. K. H. Hutter, Mathematical foundation of ice sheet and ice shelf dynamics: A physicist’s view, Free boundary problems: theory and applications, 192-20, Chapman & Hall/CRC Res. Notes math., 409, Boca Raton, FL, 1999.

  21. Kim Y.J., McCann R.J. (2006) Potential theory and optimal convergence rates in fast nonlinear diffusion. J. Math. Pures Appl. 86: 42–67

    MATH  MathSciNet  Google Scholar 

  22. Kamin S., Vázquez J.L. (1988) Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoamericana 4: 339–354

    MATH  MathSciNet  Google Scholar 

  23. O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, 1969.

  24. O. A. Ladyženskaja, V. A. Solonnikov, N. N. Uralceva, Linear and quasilinear equations of parabolic type, American Mathematical Society, 1967.

  25. Leibenzon L.S. (1945) General problem of the movement of a compressible fluid in a porous medium. Ivz. Acad. nauk. SSSR, Geography and Geophysics 9: 7–10 (in Russian)

    Google Scholar 

  26. Li J. (2001) Cauchy problem and initial trace for a doubly degenerate parabolic equation with strongly nonlinear sources. J. Math. Anal. Appl. 264: 49–67

    Article  MATH  MathSciNet  Google Scholar 

  27. G. M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co. Inc., 1996.

  28. McCann R.J. (1997) A convexity principle for interacting gases. Adv. math. 128: 153–179

    Article  MATH  MathSciNet  Google Scholar 

  29. R. J. McCann, D. Slepčev, Second-order asymptotics for the fast-diffusion equation, Int. Math. Res. Not. (2006) Art. ID 24947, 22.

  30. Nirenberg L. (1959) On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13: 115–162

    MathSciNet  Google Scholar 

  31. Otto F. (2001) The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial. Differential Equations 26(9): 101–174

    Article  MATH  MathSciNet  Google Scholar 

  32. Persson A. (1960) Bounds for the discrete part of the spectral of a semi-bounded Schrödinger operator. Math. Scand. 8: 143–153

    MATH  MathSciNet  Google Scholar 

  33. J. L. Vázquez, Smoothing and decay estimates for nonlinear diffusion equations, Oxford lecture series in mathematics and its applications, 33, Oxford Univ. Press, 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Blanchet.

Additional information

This paper is under the Creative Commons licence Attribution-NonCommercialShareAlike 2.5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agueh, M., Blanchet, A. & Carrillo, J.A. Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime. J. Evol. Equ. 10, 59–84 (2010). https://doi.org/10.1007/s00028-009-0040-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-009-0040-8

Keywords

Navigation