Skip to main content
Log in

On the controllability of the Boussinesq equation in low regularity

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the internal control problem for the Boussinesq equation posed on the torus \(\mathbb {T}\). Previous results had dealt with this problem when the state space is \(H^2(\mathbb {T})\times L^{2} (\mathbb {T})\). The main goal of this work is to improve the regularity until \(H^s(\mathbb {T})\times H^{s-2} (\mathbb {T})\) for \(s\ge -1/2\). The exact controllability of the linearized equation is proved by using the moment method and spectral analysis. In order to get the same result for the nonlinear equation, we use a fixed point argument in Bourgain spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Bona and R. L. Sachs. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm. Math. Phys., 118(1):15–29, 1988.

    Article  MathSciNet  Google Scholar 

  2. E. Cerpa and E. Crépeau. On the controllability of the improved Boussinesq equation. Under review.

  3. E. Crépeau. Exact controllability of the Boussinesq equation on a bounded domain. Differential Integral Equations, 16(3):303–326, 2003.

    MathSciNet  MATH  Google Scholar 

  4. Y.-F. Fang and M. G. Grillakis. Existence and uniqueness for Boussinesq type equations on a circle. Comm. Partial Differential Equations, 21(7-8):1253–1277, 1996.

    Article  MathSciNet  Google Scholar 

  5. L. G. Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Commun. Pure Appl. Anal., 8(5):1521–1539, 2009.

    Article  MathSciNet  Google Scholar 

  6. L. G. Farah. Local solutions in Sobolev spaces with negative indices for the “good” Boussinesq equation. Comm. Partial Differential Equations, 34(1-3):52–73, 2009.

    Article  MathSciNet  Google Scholar 

  7. L. G. Farah and M. Scialom. On the periodic “good” Boussinesq equation. Proc. Amer. Math. Soc., 138(3):953–964, 2010.

    Article  MathSciNet  Google Scholar 

  8. A. E. Ingham. Some trigonometrical inequalities with applications to the theory of series. Math. Z., 41(1):367–379, 1936.

    Article  MathSciNet  Google Scholar 

  9. N. Kishimoto. Sharp local well-posedness for the “good” Boussinesq equation. J. Differential Equations, 254(6):2393–2433, 2013.

    Article  MathSciNet  Google Scholar 

  10. F. Linares. Global existence of small solutions for a generalized Boussinesq equation. J. Differential Equations, 106(2):257–293, 1993.

    Article  MathSciNet  Google Scholar 

  11. J.-L. Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 2, volume 9 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris, 1988. Perturbations. [Perturbations].

  12. V. G. Makhankov. Dynamics of classical solitons (in nonintegrable systems). Phys. Rep., 35(1):1–128, 1978.

    Article  MathSciNet  Google Scholar 

  13. Lionel Rosier and Bing-Yu Zhang. Local exact controllability and stabilizability of the nonlinear Schrödinger equation on a bounded interval. SIAM J. Control Optim., 48(2):972–992, 2009.

    Article  MathSciNet  Google Scholar 

  14. M. Tsutsumi and T. Matahashi. On the Cauchy problem for the Boussinesq type equation. Math. Japon., 36(2):371–379, 1991.

    MathSciNet  MATH  Google Scholar 

  15. R. Xue. The initial-boundary value problem for the “good” Boussinesq equation on the bounded domain. J. Math. Anal. Appl., 343(2):975–995, 2008.

    Article  MathSciNet  Google Scholar 

  16. R. Y. Xue. Low regularity solution of the initial-boundary-value problem for the “good” Boussinesq equation on the half line. Acta Math. Sin. (Engl. Ser.), 26(12):2421–2442, 2010.

    Article  MathSciNet  Google Scholar 

  17. B.-Y. Zhang. Exact controllability of the generalized Boussinesq equation. In Control and estimation of distributed parameter systems (Vorau, 1996), volume 126 of Internat. Ser. Numer. Math., pages 297–310. Birkhäuser, Basel, 1998.

  18. Y. Zhijian. Existence and non-existence of global solutions to a generalized modification of the improved Boussinesq equation. Math. Methods Appl. Sci., 21(16):1467–1477, 1998.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivonne Rivas.

Additional information

This work has been partially supported by Fondecyt grant 1140741, Basal Project FB0008 AC3E, MathAmsud Project 17-MATH-04 and Colciencias 1106-712-50006.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerpa, E., Rivas, I. On the controllability of the Boussinesq equation in low regularity. J. Evol. Equ. 18, 1501–1519 (2018). https://doi.org/10.1007/s00028-018-0450-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0450-6

Navigation