Skip to main content
Log in

Asymptotic modelling of conductive thin sheets

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We derive and analyse models which reduce conducting sheets of a small thickness ε in two dimensions to an interface and approximate their shielding behaviour by conditions on this interface. For this we consider a model problem with a conductivity scaled reciprocal to the thickness ε, which leads to a nontrivial limit solution for ε → 0. The functions of the expansion are defined hierarchically, i.e. order by order. Our analysis shows that for smooth sheets the models are well defined for any order and have optimal convergence meaning that the H 1-modelling error for an expansion with N terms is bounded by O(ε N+1) in the exterior of the sheet and by O(ε N+1/2) in its interior. We explicitly specify the models of order zero, one and two. Numerical experiments for sheets with varying curvature validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoine X., Barucq H., Vernhet L.: High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions. Asymptot. Anal. 26(3–4), 257–283 (2001)

    MATH  MathSciNet  Google Scholar 

  2. Bartoli N., Bendali A.: Robust and high-order effective boundary conditions for perfectly conducting scatterers coated by a thin dielectric layer. IMA J. Appl. Math. 67, 479–508 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bendali A., Lemrabet K.: The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 6, 1664–1693 (1996)

    Article  MathSciNet  Google Scholar 

  4. Bendali A., Lemrabet K.: Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell. Asymptot. Anal. 57(3–4), 199–227 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Biro O., Preis K., Richter K., Heller R., Komarek P., Maurer W.: FEM calculation of eddy current losses and forces in thin conducting sheets of test facilities for fusion reactor components. IEEE Trans. Magn. 28(2), 1509–1512 (1992)

    Article  Google Scholar 

  6. Bottauscio O., Chiampi M., Manzin A.: Transient analysis of thin layers for the magnetic field shielding. IEEE Trans. Magn. 42(4), 871–874 (2006)

    Article  Google Scholar 

  7. Braess D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  8. Caloz G., Costabel M., Dauge M., Vial G.: Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer. Asymptot. Anal. 50(1), 121–173 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Chechurin V., Kalimov A., Minevich L., Svedentsov M., Repetto M.: A simulation of magneto-hydrostatic phenomena in thin liquid layers of an aluminum electrolytic cell. IEEE Trans. Magn. 36(4), 1309–1312 (2000)

    Article  Google Scholar 

  10. Concepts Development Team. Webpage of Numerical C++ Library Concepts 2. http://www.concepts.math.ethz.ch (2008)

  11. Duruflé M., Haddar H., Joly P.: Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C. R. Physique 7(5), 533–542 (2006)

    Article  Google Scholar 

  12. Frauenfelder P., Lage C.: Concepts—an object-oriented software package for partial differential equations. M2AN Math. Model. Numer. Anal. 36(5), 937–951 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guérin C., Tanneau G., Meunier G., Labie P., Ngnegueu T., Sacotte M.: A shell element for computing 3D eddy currents—application to transformers. IEEE Trans. Magn. 31(3), 1360–1363 (1995)

    Article  Google Scholar 

  14. Gyselinck J., Sabariego R.V., Dular P., Geuzainehin C.: Time-domain finite-element modeling of thin electromagnetic shells. IEEE Trans. Magn. 44(6), 742–745 (2008)

    Article  Google Scholar 

  15. Haddar H., Joly P., Nguyen H.-M.: Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15(8), 1273–1300 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Igarashi H., Kost A., Honma T.: A boundary element analysis of magnetic shielding for electron microscopes. COMPEL 17(5/6), 585–594 (1998)

    MATH  Google Scholar 

  17. Igarashi H., Kost A., Honma T.: Impedance boundary condition for vector potentials on thin layers and its application to integral equations. Eur. Phys. J. AP 1, 103–109 (1998)

    Article  Google Scholar 

  18. Krähenbühl L., Muller D.: Thin layers in electrial engineering. Example of shell models in analysing eddy-currents by boundary and finite element methods. IEEE Trans. Magn. 29, 1450–1455 (1993)

    Article  Google Scholar 

  19. Leontovich, M.A.: On approximate boundary conditions for electromagnetic fields on the surface of highly conducting bodies (in russian). Research in the propagation of radio waves, pp. 5–12. Moscow, Academy of Sciences (1948)

  20. Mayergoyz I.D., Bedrosian G.: On calculation of 3-D eddy currents in conducting and magnetic shells. IEEE Trans. Magn. 31(3), 1319–1324 (1995)

    Article  Google Scholar 

  21. Miri A.M., Riegel N.A., Meinecke C.: FE calculation of transient eddy currents in thin conductive sheets using dynamic boundary conditions. Int. J. Numer. Model. 11, 307–316 (1998)

    Article  MATH  Google Scholar 

  22. Nakata T., Takahashi N., Fujiwara K., Shiraki Y.: 3D magnetic field analysis using special elements. IEEE Trans. Magn. 26(5), 2379–2381 (1990)

    Article  Google Scholar 

  23. Péron V., Poignard, C.: Approximate transmission conditions for time-harmonic Maxwell equations in a domain with thin layer. Research Report RR-6775, INRIA (2008)

  24. Poignard, C.: Approximate transmission conditions through a weakly oscillating thin layer. Math. Methods Appl. Sci. 32, 4 (2009)

    Google Scholar 

  25. Safa Y., Flueck M., Rappaz J.: Numerical simulation of thermal problems coupled with magnetohydrodynamic effects in aluminium cell. Appl. Math. Modell. 33(3), 1479–1492 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sauter S., Schwab C.: Randelementmethoden, B.G. Teubner-Verlag, Stuttgart (2004)

    Google Scholar 

  27. Schmidt, K.: High-order numerical modelling of highly conductive thin sheets. PhD thesis, ETH Zürich (2008)

  28. Senior T., Volakis J.: Approximate Boundary Conditions in Electromagnetics. Institution of Electrical Engineers, London (1995)

    MATH  Google Scholar 

  29. Shchukin A.N.: Propagation of Radio Waves (in russian). Svyazizdat, Moscow (1940)

    Google Scholar 

  30. Yosida K.: Lectures on Differential and Integral Equations. Dover, New York (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kersten Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, K., Tordeux, S. Asymptotic modelling of conductive thin sheets. Z. Angew. Math. Phys. 61, 603–626 (2010). https://doi.org/10.1007/s00033-009-0043-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-009-0043-x

Mathematics Subject Classification (2000)

Keywords

Navigation