Skip to main content
Log in

On the existence of dynamics in Wheeler–Feynman electromagnetism

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Wheeler–Feynman electrodynamics (WF) is an action-at-a-distance theory about world-lines of charges that in contrary to the textbook formulation of classical electrodynamics is free of ultraviolet singularities and is capable of explaining the irreversible nature of radiation. In WF, the world-lines of charges obey the so-called Fokker–Schwarzschild–Tetrode (FST) equations, a coupled set of nonlinear and neutral differential equations that involve time-like advanced as well as retarded arguments of unbounded delay. Using a reformulation of this theory in terms of Maxwell–Lorentz electrodynamics without self-interaction that we have introduced in a preceding work, we are able to establish the existence of conditional solutions. These conditional solutions solve the FST equations on any finite time interval with prescribed continuations outside of this interval. As a byproduct, we also prove existence and uniqueness of solutions to the Synge equations on the time half-line for a given history of charge world-lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J.L.: Principles of Relativity Physics. Academic Press Inc., London. ISBN: 0120584506 (1967)

  2. Angelov V.G.: On the Synge equations in a three-dimensional two-body problem of classical electrodynamics. J. Math. Anal. Appl. 151(2), 488–511 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauer, G.: Ein Existenzsatz für die Wheeler–Feynman-Elektrodynamik. Herbert Utz Verlag. ISBN: 3896751948 (1997)

  4. Bauer, G., Deckert, D.-A., Dürr, D.: Maxwell–Lorentz dynamics of rigid charges. arXiv:1009.3105 (2010)

  5. Deckert, D.-A.: Electrodynamic Absorber Theory. Der Andere Verlag, Osnabrück. ISBN: 978-3-86247-004-4 (2010)

  6. Deckert, D.-A., Dürn, D., Vona, N.: Delay equations of the Wheeler–Feynman type. Contemp. Math. Fundam. Dir. (to appear)

  7. Dirac P.A.M.: Classical theory of radiating electrons. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 167(929), 148–169 (1938)

    Article  Google Scholar 

  8. Driver R.D.: A ”backwards” two-body problem of classical relativistic electrodynamics. Phys. Rev. 178(5), 2051 (1969)

    Article  MathSciNet  Google Scholar 

  9. Driver, R.D.: Ordinary and Delay Differential Equations. Springer, New York. ISBN: 0387902317 (1977)

  10. Driver R.D.: Can the future influence the present?. Phys. Rev. D 19(4), 1098 (1979)

    Article  MathSciNet  Google Scholar 

  11. Diekmann, O., van Gils, S.A., Lunel, S.M.V., Walther, H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis: v. 110, 1st edn. Springer, Berlin (1995)

  12. Van Dam H., Wigner E.P.: Classical relativistic mechanics of interacting point particles. Phys. Rev. 138(6B), B1576–B1582 (1965)

    Article  MathSciNet  Google Scholar 

  13. Fokker A.D.: Ein invarianter Variationssatz für die Bewegung mehrerer elektrischer Massenteilchen. Zeitschrift für Physik A Hadrons and Nuclei 58(5), 386–393 (1929)

    MATH  Google Scholar 

  14. Gauß C.: A letter to W. Weber in March 19th, 1845. Gauß: Werke 5, 627–629 (1877)

    Google Scholar 

  15. Komech A., Spohn H.: Long-time asymptotics for the coupled Maxwell–Lorentz equations. Commun. Partial Differ. Equ. 25(3), 559 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Oxford University Press, Oxford (2001)

  17. De Luca J.: Variational principle for the Wheeler–Feynman electrodynamics. J. Math. Phys. 50(6), 062701–062724 (2009)

    Article  MathSciNet  Google Scholar 

  18. Myškis, A.D.: General theory of differential equations with a retarded argument. Am. Math. Soc. Translation. no. 55, 62. MR 0046551 (13,752a) (1951)

  19. Pauli, W.: Relativitätstheorie. Encykl. d. Math. Wissenschaften, V (IV-19)

  20. Schwarzschild K.: Zur Elektrodynamik. II. Die elementare elektrodynamische Kraft. Nachr. Ges. Wis. Gottingen 128, 132 (1903)

    Google Scholar 

  21. Schild A.: Electromagnetic two-body problem. Phys. Rev. 131(6), 2762 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  22. Siegel C.L., Moser J.K.: Lectures on Celestial Mechanics. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  23. Spohn H.: Dynamics of Charged Particles and their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  24. Synge J.L.: On the electromagnetic two-body problem. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 177(968), 118–139 (1940)

    Article  MathSciNet  Google Scholar 

  25. Synge J.L.: Relativity. Series in Physics. North-Holland, Amsterdam (1976)

    Google Scholar 

  26. Tetrode H.: Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik. Zeitschrift für Physik A 10(1), 317–328 (1922)

    Article  Google Scholar 

  27. Wheeler J.A., Feynman R.P.: Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17(2–3), 157 (1945)

    Article  Google Scholar 

  28. Wheeler J.A., Feynman R.P.: Classical electrodynamics in terms of direct interparticle action. Rev. Mod. Phys. 21(3), 425 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  29. Whitehead A.N.: The Concept of Nature: Tarner Lectures. Cambridge University Press, Cambridge (1920)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. -A. Deckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, G., Deckert, D.A. & Dürr, D. On the existence of dynamics in Wheeler–Feynman electromagnetism. Z. Angew. Math. Phys. 64, 1087–1124 (2013). https://doi.org/10.1007/s00033-012-0293-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0293-x

Mathematics Subject Classification

Keywords

Navigation