Skip to main content
Log in

Wave diffraction from the truncated hollow wedge: analytical regularization and Wiener–Hopf analysis

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The electromagnetic wave diffraction from perfectly conducting truncated wedges is considered on the rigorous level in cylindrical coordinates. An analytical regularization method is developed to obtain mathematically accurate problem solutions. The solution method is based on the unknown field representation through the principal value Kontorovich–Lebedev integral and the eigenfunctions series. We analyze the scattering from the semi-infinite truncated wedge, which consists of two non-parallel and non-intersecting perfectly conducting and infinitely thin half-planes, and develop this technique for analysis of more complicated problems of wave diffraction from the truncated wedge of finite length. The problems are reduced to the infinite systems of linear algebraic equations (ISLAE) of the first kind. The convolution type operators and their inverse ones are used to reduce them to the ISLAE of the second kind applied to the analytical regularization procedure. Two versions of the procedure, such as left- and right-sides regularization, are considered. The developed technique is compared with the Wiener–Hopf method. The numerical examples of wave scattering from the truncated wedge, including its well-known geometries as the semi-plane and the slit in the infinite plane, are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sommerfeld, A.: Mathematical Theory of Diffraction. Birkhauser, Boston (2003)

    Google Scholar 

  2. Bowman, J.J.: The wedge in electromagnetic and acoustic scattering by simple shapes. In: Bowman, J.J., Senior, T.B.A., Uslenghi, P.L.E. (eds.) Electromagnetic and Acoustic Scattering by Simple Shapes, pp. 256–283. North-Holland Publishing Co., Amsterdam (1969)

    Google Scholar 

  3. Grinberg, G.A.: Selected Problems in the Mathematical Theory of Electric and Magnetic Phenomena. Izd-vo AN, Moskow-Leningrad (1948)

    Google Scholar 

  4. Babich, V.M., Lyalinov, M.A., Grikurov, V.E.: Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science International (2008)

  5. Budaev, B.V.: Diffraction by Wedges, vol. 322. CRC Press (1995)

  6. Osipov, A.V., Tretyakov, S.A.: Modern Electromagnetic Scattering Theory with Applications. Wiley (2017)

  7. Osipov, A.V., Norris, A.N.: The malyuzhinets theory for scattering from wedge boundaries: a review. Wave Motion 29(4), 313–340 (1999)

    Article  MathSciNet  Google Scholar 

  8. Nethercote, M.A., Assier, R.C., Abrahams, I.D.: Analytical methods for perfect wedge diffraction: a review. Wave Motion 93, 102479 (2020)

    Article  MathSciNet  Google Scholar 

  9. Rawlins, A.D.: Diffraction by, or diffusion into, a penetrable wedge. Proc. R. Soc. A: Math. 455(1987), 2655–2686 (1999)

    Article  MathSciNet  Google Scholar 

  10. Daniele, V., Lombardi, G.: The wiener-hopf solution of the isotropic penetrable wedge problem: diffraction and total field. IEEE Trans. Antennas Propag. 59(10), 3797–3818 (2011)

    Article  MathSciNet  Google Scholar 

  11. Tolstoy, I.: Exact, explicit solutions for diffraction by hard sound barriers and seamounts. J. Acoust. Soc. Am. 85(2), 661–669 (1989)

    Article  Google Scholar 

  12. Ufimtsev, P.Y.: Fundamentals of the Physical Theory of Diffraction. Wiley (2007)

  13. Hrinchenko, V.T., Matsypura, V.T.: Sound radiation from an open end of the wedge waveguide. i. Method for solution and algorithm for calculation. Acoust. Bull. 2(4), 32–41 (1999)

    MATH  Google Scholar 

  14. Hrinchenko, V.T., Matsypura, V.T.: Sound radiation from an open end of the wedge waveguide. ii. Numerical analysis. Acoust. Bull. 3(2), 63–71 (2000)

    Google Scholar 

  15. Plonus, M.: Electromagnetic radiation from a cylindrically capped bi-wedge. IEEE Trans. Antennas Propag. 10(2), 206–210 (1962)

    Article  Google Scholar 

  16. Polycarpou, A.C., Christou, M.A., Todorov, M.D., Christov, C.I.: Spectral formulation for the solution of full-wave scattering from a conducting wedge tipped with a corrugated cylinder. In: Application of Mathematics in Technical and Natural Sciences, AIP Conference Proceedings. AIP (2011)

  17. Kim, J.J., Eom, H.J., Hwang, K.C.: Electromagnetic scattering from a slotted conducting wedge. IEEE Trans. Antennas Propag. 58(1), 222–226 (2010)

    Article  MathSciNet  Google Scholar 

  18. Forouzmand, A., Yakovlev, A.B.: Electromagnetic cloaking of a finite conducting wedge with a nanostructured graphene metasurface. IEEE Trans. Antennas Propag. 63(5), 2191–2202 (2015)

    Article  Google Scholar 

  19. Weisleib, Y.V.: Electromagnetic wave diffraction by the finite wedge. Radiotechnika and Electronica 15(8), 1568–1579 (1970)

    Google Scholar 

  20. Belichenko, V.P.: Finite integral transformation and factorization methods for electro-dynamics and electrostatic problems. In: Mathematical methods for electrodynamics boundary value problems. Izd. Tomsk. Univ. (1990)

  21. Kuryliak, D.B.: Wave diffraction from the PEC finite wedge. J. Eng. Math. 134(1), 1–25 (2022)

    Article  MathSciNet  Google Scholar 

  22. Kuryliak, D.: Diffraction by semi-infinite cone formed with electric and magnetic surfaces: analytical regularization and wiener-hopf techniques. J. Eng. Math. 115(1), 43–65 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kuryliak, D.: Some diffraction problems involving conical geometries and their rigorous analysis. In: 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET). IEEE (2018)

  24. Kuryliak, D.B., Sharabura, O.M.: Wave diffraction from the biconical section in the semi-infinite conical region. Math. Methods Appl. Sci. 43(4), 1565–1581 (2019)

    Article  MathSciNet  Google Scholar 

  25. Kuryliak, D., Lysechko, V.: Plane wave diffraction from a finite soft cone at oblique incidence. J. Sound Vib. 438, 309–323 (2019)

    Article  Google Scholar 

  26. Kuryliak, D., Lysechko, V.: Scattering of the plane acoustic wave from a finite hollow rigid cone at oblique incidence. ZAMM J. Appl. Math. Mech. 99(2), e201800127 (2018)

    Article  MathSciNet  Google Scholar 

  27. Kuryliak, D.B., Lysechko, V.O.: Acoustic plane wave diffraction from a truncated semi-infinite cone in axial irradiation. J. Sound Vib. 409(8), 81–93 (2017)

    Article  Google Scholar 

  28. Popov, G.Y.: Exact Solutions of Some Boundary Problems of Deformable Solid Mechanic. Astroprint, Odessa (2013)

    Google Scholar 

  29. Vorovich, I.I., Aleksandrov, V.M., Babeshko, V.A.: Nonclasical Mixed Problems of Elasticity Theory. Nauka, Moscow (1974)

    Google Scholar 

  30. Shestopalov, V.P., Kirilenko, A.A., Masalov, S.A.: Convolution-Type Matrix Equations in the Theory of Diffraction. Naukova Dumka, Kyiv (1984)

    Google Scholar 

  31. Veliev, E.I., Veremey, V.V.: Numerical-analytical approach for the solution to the wave scattering by polygonal cylinders and flat strip structures. In: Analytical and Numerical Methods in Electromagnetic Wave Theory. Science House Co., Ltd (1993)

  32. Chumachenko, V.P.: Domain-product technique solution for the problem of electromagnetic scattering from multiangular composite cylinders. IEEE Trans. Antennas Propag. 51(10), 2845–2851 (2003)

    Article  Google Scholar 

  33. Hönl, H., Maue, A.W., Westpfahl, K.: Theorie der beugung. In: Handbuch der Physik. Springer, Berlin (1961)

  34. Rawlins, A.D.: Plane-wave diffraction by a rational wedge. Proc. R. Soc. Lond. A. Math. Phys. Sci. 411(1841), 265–283 (1987)

    MATH  Google Scholar 

  35. Gradshtein, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products. Gosudarstvennoe Izdatelstvo Fiziko-Matematiceskoj Literatury, Moscow (1963)

    Google Scholar 

  36. Noble B (1958) Methods based on the wiener-hopf technique for the solution of partial differential equations. In: International Series of Monographs on Pure and Applied Mathematics. vol. 7. Pergamon Press, p. 246

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dozyslav B. Kuryliak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Let us consider the series representation (2) through the principal value integral (5) using the following definition

$$\begin{aligned} \dfrac{1}{2\pi \mathrm {i}} P\int \limits _{-i\infty }^{+\mathrm {i}\infty }\left\langle \cdot \right\rangle \mathrm {d}\nu \equiv \dfrac{1}{2\pi \mathrm {i}} {\mathop {\lim }\limits _{\begin{array}{c} N\rightarrow \infty \\ \upsilon _{1} \rightarrow 0 \end{array}}} \left[ \int \limits _{-\mathrm {i}N}^{-\mathrm {i}\upsilon _{1}}\left\langle \cdot \right\rangle d\nu + \int \limits _{\mathrm {i}\upsilon _{1} }^{\mathrm {i}N}\left\langle \cdot \right\rangle \mathrm {d}\nu \right] =\dfrac{1}{2\pi \mathrm {i}} {\mathop {\lim }\limits _{\begin{array}{c} N\rightarrow \infty \\ \upsilon _{1} \rightarrow 0 \end{array}}} \left[ \int \limits _{\Gamma _{\upsilon _{1} } }\left\langle \cdot \right\rangle \mathrm {d}\nu - \int \limits _{C_{\upsilon _{1}}}\left\langle \cdot \right\rangle \mathrm {d}\nu \right] \end{aligned}$$
(79)

with

$$\begin{aligned} \dfrac{1}{2\pi \mathrm {i}} {\mathop {\lim }\limits _{\begin{array}{c} N\rightarrow \infty \\ \upsilon _{1} \rightarrow 0 \end{array}}} \int \limits _{\Gamma _{\upsilon _{1}}}\left\langle \cdot \right\rangle \mathrm {d}\nu =-\sum \limits _{(\xi _{n} )}res\left\langle \cdot \right\rangle _{\begin{array}{c} \xi _{n}\\ \mathrm {Re}\xi _{n}>0) \end{array}}-\dfrac{1}{2\pi \mathrm {i}} {\mathop {\lim }\limits _{R_{N} \rightarrow \infty }} \int \limits _{C_{R_{N} } }\left\langle \cdot \right\rangle \mathrm {d}\nu , \end{aligned}$$
(80)

where \(\left\langle \cdot \right\rangle \) indicates the integrand; the integration path \(\Gamma _{\upsilon _{1}} \) runs along the imaginary axis \((-\mathrm {i}N,-\mathrm {i}\upsilon _{1})\bigcup \) \((\mathrm {i}\upsilon _{1},\mathrm {i}N)\) and bypasses the simple pole at \(\nu =0\) embracing this point from the right side by the semi-circle \(C_{\upsilon _{1}} \) of the infinitely small radius \(\upsilon _{1} \) (see Fig. 9). The singularities of this integrand take the form of simple poles at \(\nu =n\), \(n=1,2,3,\ldots \) that lie at the right-hand semi-plane of the complex plane \(\nu \); \(C_{R_{N}} \) is the semi-circle in right semi-plane with radius \(R_{N} \).

Let us use the asymptotic estimations of the Macdonald and modified Bessel functions for the large indexes and find that on the imaginary axis \(\mathrm {arg}(\nu )=\pm \pi /2\), and for the real wave number parameter \(s=-\mathrm {i}k\), \(\mathrm {arg}(s)=0\) the product \(K_{\nu }(sr_{>})I_{\nu }(sr_{<})\sim |\nu |^{-1}\), if \(|\nu |\rightarrow \infty \). This product decays exponentially on the contour \(C_{R_{N}}\) for \(-\pi /2<\mathrm {arg}(\nu )<\pi /2\), if \(R_{N}\rightarrow \infty \).

Fig. 9
figure 9

Contour for integration in the expression (79)

Considering this, we find that the integral (5) becomes absolutely convergent and, if the parameter s is real, can be evaluated applying the residues theorem. The equivalence of the representations (2) and (5) directly follows from this evaluation.

Appendix B

Here, we show the schemes briefly for the derivation of the series Eq. (24). Let us substitute the expression (20) into Eq. (18). Then using Theorem 1, we represent this equation in the form which keeps the integrals as

$$\begin{aligned} U_{n}^{(l)} (sr)=\dfrac{1}{\pi \mathrm {i}} P\int \limits _{-\mathrm {i}\infty }^{\mathrm {i}\infty }\nu M_{l} (\nu )\int \limits _{c}^{\infty }K_{z_{n}^{(l)} } (sr')\left\{ \begin{array}{l} {{\mathop {I_{\nu } (sr')K_{\nu } (sr)}\limits _{r\ge r'}} } \\ {{\mathop {K_{\nu } (sr')I_{\mathrm{\nu }} (sr)}\limits _{r\le r'}} } \end{array}\right\} \dfrac{\mathrm {d}r'}{r'}\mathrm {d}\nu . \end{aligned}$$
(81)

Here, \(r\in (c,\infty )\), \(n=1,2,3, \ldots \). Let us evaluate the internal integral (81) using the formula:

$$\begin{aligned} \int \limits _{c}^{\infty }K_{z_{n}^{(l)}} (sr')\left\{ \begin{array}{l} {{\mathop {I_{\nu } (sr')K_{\nu } (sr)}\limits _{r\ge r'}} } \\ {{\mathop {K_{\nu } (sr')I_{\nu } (sr)}\limits _{r\le r'}} } \end{array}\right\} \dfrac{\mathrm {d}r'}{r'} = \dfrac{K_{z_{n}^{(l)}} (sr)}{\nu ^{2}-(z_{n}^{(l)} )^{2}}-K_{\nu } (sr)\dfrac{scW[K_{z_{n}^{(l)} } I_{\nu }]_{sc}}{\nu ^{2} -(z_{n}^{(l)})^{2}}. \end{aligned}$$
(82)

Then, according to the definition (79) and representation (81), the first term in (82) forms a couple of integrals for each \(n=1,2,\, 3,\ldots \) and \(l=1,2\) as

$$\begin{aligned} J_{n}^{(l)} =\dfrac{1}{\pi \mathrm {i}} {\mathop {\lim }\limits _{ \begin{array}{c} N\rightarrow \infty \\ \upsilon _{1} \rightarrow 0 \end{array}}} \int \limits _{\Gamma _{\upsilon _{1} } }\dfrac{\nu M_{l} (\nu )}{\nu ^{2} -(z_{n}^{(l)} )^{2} } \mathrm {d}\nu -\dfrac{\delta _{l}^{1} }{\pi \mathrm {i}} {\mathop {\lim }\limits _{\upsilon _{1} \rightarrow 0}}\int \limits _{C_{\upsilon _{1} } }\dfrac{\nu M_{l} (\nu )}{\nu ^{2}-(z_{n}^{(l)})^{2} }\mathrm {d}\nu . \end{aligned}$$
(83)

Let us formulate the further result as Theorem B: The integral \(J_{n}^{(l)} \) is equal to zero for any \(z_{n}^{(l)} \).

Proving: Taking into account that \(M_{l} (\nu )=M_{l} (-\nu )\), let us rewrite the first integral (83) as

$$\begin{aligned} {\mathop {J}\limits ^{\frown }}_{n}^{(l)} =\dfrac{1}{\pi \mathrm {i}} {\mathop {\lim }\limits _{\begin{array}{c} N\rightarrow \infty \\ \upsilon _{1} \rightarrow 0 \end{array}}} \int \limits _{\Gamma _{\upsilon _{1} } }\dfrac{\nu M_{l} (\nu )}{\nu ^{2} -(z_{n}^{(l)} )^{2} } d\nu =\dfrac{1}{2\pi \mathrm {i}} {\mathop {\lim }\limits _{\begin{array}{c} N\rightarrow \infty \\ \upsilon _{1} \rightarrow 0 \end{array}}} \left[ \int \limits _{\uparrow \Gamma _{\upsilon _{1} } + \delta }\dfrac{M_{l} (\nu )}{\nu -z_{n}^{(l)} } \mathrm {d}\nu +\int \limits _{\downarrow \Gamma _{\upsilon _{1}} -\delta }\dfrac{M_{l} (\nu )}{\nu - z_{n}^{(l)} }\mathrm {d}\nu \right] . \end{aligned}$$
(84)

Here, \(\uparrow \Gamma _{\upsilon _{1} } +\delta \) is the integration path formed from the contour \(\Gamma _{\upsilon _{1} } \) that is determined in “Appendix A” by shifting it to the right of the imaginary axes by the value \(0<\delta <1\) and \(\downarrow \Gamma _{\upsilon _{1} } -\delta \) is the integration path formed from the contour \(\Gamma _{\upsilon _{1} } \) by shifting it to the left by the value \(0<\delta <1\) and from the \(\uparrow \Gamma _{\upsilon _{1} } +\delta \) by changing \(\nu \in (\uparrow \Gamma _{\upsilon _{1} } +\delta )\) \(\rightarrow -\nu \); these contours are oppositely oriented, the arrows \(\uparrow ,\downarrow \) show the directions of integration. Considering that the integrands decay as \(O(\nu ^{-2} )\), if \(|\nu |\rightarrow \infty \), we reduce \({\mathop {J}\limits ^{\frown }}_{n}^{(l)} \) to the integration along the closed contour \({\mathop {C}\limits ^{\frown }}_{\upsilon _{1} } \) (see Fig. 10), which encompasses the second-order pole of the function \(M_{l} (\nu )\) at \(\nu =0\), if \(l=1\) and the closed contour \({\mathop {C}\limits ^{\frown }}_{\upsilon _{1} } \) encompasses the regular function, if \(l=2\). Therefore, applying the residues theorem, we find that

$$\begin{aligned} {\mathop {J}\limits ^{\frown }}_{n}^{(l)} =\dfrac{1}{\pi \mathrm {i}} {\mathop {\lim }\limits _{\begin{array}{c} N\rightarrow \infty \\ \upsilon _{1} \rightarrow 0 \end{array}}} \int \limits _{\Gamma _{\upsilon _{1}}}\dfrac{\nu M_{l} (\nu )}{\nu ^{2} -(z_{n}^{(l)} )^{2} } \mathrm {d}\nu =\dfrac{1}{2\pi \mathrm {i}} {\mathop {\lim }\limits _{\begin{array}{c} N\rightarrow \infty \\ \upsilon _{1} \rightarrow 0 \end{array}}} \int \limits _{{\mathop {C}\limits ^{\frown }}_{\upsilon _{1} } }\dfrac{M_{l} (\nu )}{\nu -z_{n}^{(l)} } \mathrm {d}\nu ={\left\{ \begin{array}{ll} -1/[\pi (z_{n}^{(l)} )^{2}],&{} \text{ if } l=1, \\ 0, &{} \text{ if } l=2. \end{array}\right. } \end{aligned}$$
(85)

Then taking into account the fact that the integral along the semi-circle \(C_{\upsilon _{1} } \) in (83) accepts the same value, we find that \(J_{n}^{(l)} \) is equal to zero for any \(z_{n}^{(l)}\). \(\square \)

We evaluate the integral formed from (81) by the second term in the right-hand side of the expression (82) using the residue theorem. Considering the definition (79), (80) we evaluate the integral along the contour \(\Gamma _{\upsilon _{1} } \)embracing the integrand singularity in the right semi-plane by the semi-circle \(C_{R_{N}}\). Similarly, we transform the known part of Eq. (18) and arrive at the series equation (24a). The integration along the semi-circle \(C_{\upsilon _{1}} \) takes into account the singularity at \(\nu =0\) and leads to the equation (24b).

Fig. 10
figure 10

Integration contour for evaluation of the integral \(J_{n}^{(l)}\)

Appendix C

Let us consider the series

$$\begin{aligned} \Upsilon _{qn}^{(l)}=\sum \limits _{p=1}^{\infty }\dfrac{\tau _{qp}^{(l)}}{\xi _{p}^{(l)}+z_{n}^{(l)}}=\dfrac{1}{\left[ M_{l}^{-}(z_{q}^{(l)})\right] '}\sum \limits _{p=1}^{\infty }\dfrac{1}{\left\{ [M_{l}^{-}{(\xi _{p}^{(l)})]^{-1}}\right\} '\, (z_{q}^{(l)}-\xi _{p}^{(l)})(\xi _{p}^{(l)}+z_{n}^{(l)})}. \end{aligned}$$
(86)

In order to obtain the summation formula for the series (51), let us introduce the integral as

$$\begin{aligned} J_{qn}^{(l)}=\dfrac{1}{2\pi \mathrm {i}{[M_{l}^{-}(z_{q}^{(l)})]' }}\int \limits _{C_{R}}{\dfrac{M_{l}^{-}(t)\mathrm {d}t}{(z_{q}^{(l)}-t)(t+z_{n}^{(l)})}}. \end{aligned}$$
(87)

Here, \(C_{R}\) is the circular integration path in the complex plane t, the points \(t=0\) and R are the center and the radius of the circle respectively; \(C_{R}\) outline encompasses the simple poles of the integrand at \(t=\xi _{q}^{(l)}\) (\(p=1,2,3,\ldots \)) and \(t=-z_{n}^{(l)}\). For \(|t|\rightarrow \infty \) the integrand as a function of t tends to zero not slower than \(t^{-5/2}\), therefore, \(J_{qn}^{(l)}\rightarrow 0\), if \(R\rightarrow \infty \). Then, applying the residues theorem, we arrive at the equality as

$$\begin{aligned} \dfrac{1}{[M_{l}^{-}(z_{q}^{(l)})]'}\sum \limits _{p=1}^{\infty }\dfrac{1}{\left\{ [M_{l}^{-}(\xi _{p}^{(l)})]^{-1}\right\} '(z_{q}^{(l)}-\xi _{p}^{(l)})(\xi _{p}^{(l)}+z_{n}^{(l)})}=-\dfrac{M_{l}^{+}(z_{n}^{(l)})}{[M_{l}^{-}(z_{q}^{(l)})]'(z_{q}^{(l)}+z_{n}^{(l)})}. \end{aligned}$$
(88)

This formula proves representation (51).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuryliak, D.B., Lysechko, V.O. Wave diffraction from the truncated hollow wedge: analytical regularization and Wiener–Hopf analysis. Z. Angew. Math. Phys. 73, 208 (2022). https://doi.org/10.1007/s00033-022-01841-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01841-6

Keywords

Mathematics Subject Classification

Navigation