Skip to main content
Log in

An Improved Denoising Model Based on the Analysis K-SVD Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Denoising models play an important role in various applications, such as signal denoising. Recently, the analysis K- singular-value decomposition (SVD) (AK-SVD) algorithm has emerged as an efficient dictionary learning algorithm derived from the analysis sparse model, which has achieved promising performance in various problems. In this paper, we propose a new method that uses AK-SVD for signal denoising. Specifically, we divide input signals into redundant signal segments, which are used to generate denoised segments and train the analysis dictionary using AK-SVD. The maximum a posteriori estimator, which is defined as the minimizer of a global penalty term, is used to integrate multiple local denoised segments to attain the global denoised signals. Furthermore, the basis functions of the denoised signal are constructed based on the previously built analysis dictionary. Numerical experiments demonstrate that the proposed method can outperform the existing state-of-the-art denoising approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Aharon, M. Elad, A. Bruckstein, SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006). doi:10.1109/TSP.2006.881199

    Article  Google Scholar 

  2. R.G. Andrzejak, K. Schindler, C. Rummel, Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 86, 046206 (2012). doi:10.1103/PhysRevE.86.046206

    Article  Google Scholar 

  3. A.M. Bruckstein, D.L. Donoho, M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51, 34–81 (2009). doi:10.1137/060657704

    Article  MathSciNet  MATH  Google Scholar 

  4. J.F. Cai, S. Osher, Z. Shen, Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8, 337–369 (2010). doi:10.1137/090753504

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Chen, R. Ranftl, T. Pock, Insights into analysis operator learning: a view from higher-order filter-based mrf model. IEEE Trans. Image Process. 23, 1060–1072 (2014)

    Article  MathSciNet  Google Scholar 

  6. J. Chen, Z. Zhang, Y. Wang, Relevance metric learning for person re-identification by exploiting listwise similarities. IEEE Trans. Image Proccess. 24, 4741–4755 (2015)

    Article  MathSciNet  Google Scholar 

  7. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995). doi:10.1109/18.382009

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006). doi:10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  9. J.M. Fadili, G. Peyr, Learning analysis sparsity priors, in Sampta’11 (2011)

  10. R. Golafshan, K. Yuce Sanliturk, SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults. Mech. Syst. Signal Process. 70–71, 36–50 (2016). doi:10.1016/j.ymssp.2015.08.012

    Article  Google Scholar 

  11. M. Gay, L. Lampe, A. Lampe, SVD-based de-noising and parametric channel estimation for power line communication systems, in International Symposium on Power Line Communications and Its Applications, pp. 7–12 (2016)

  12. H. Hao, Q. Wang, P. Li, L. Zhang, Evaluation of ground distances and features in EMD-based GMM matching for texture classification. Pattern Recognit. 57, 152–163 (2016). doi:10.1016/j.patcog.2016.03.001

    Article  Google Scholar 

  13. J. Jenitta, A. Rajeswari, Denoising of ECG signal based on improved adaptive filter with EMD and EEMD, in IEEE Conference on Information and Communication Technologies, pp. 957–962 (2013)

  14. V. Klema, A. Laub, The singular value decomposition: its computation and some applications. IEEE Trans. Autom. Control 25, 164–176 (1980). doi:10.1109/TAC.1980.1102314

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. Lai, Z. Jin, J. Yang, Global sparse representation projections for feature extraction and classification, in IEEE Chinese Conference on Pattern Recognition, pp. 1–5 (2009)

  16. Y. Li, S. Ding, Z. Li, Dictionary learning with the cosparse analysis model based on summation of blocked determinants as the sparseness measure. Digit. Signal Process. 48, 298–309 (2016). doi:10.1016/j.dsp.2015.09.011

    Article  MathSciNet  Google Scholar 

  17. H. Li, L. Li, D. Zhao, J. Chen, P. Wang, Reconstruction and basis function construction of electromagnetic interference source signals based on Toeplitz-based singular value decomposition. IET Signal Process. (2016). doi:10.1049/iet-spr.2016.0307

    Google Scholar 

  18. H. Li, C. Wang, D. Zhao, An improved EMD and its applications to find the basis functions of EMI signals. Math. Probl. Eng. (2015). doi:10.1155/2015/150127

    Google Scholar 

  19. H.Y. Li, D. Zhao, F. Dai, D.L. Su, On the spectral radius of a nonnegative centrosymmetric matrix. Appl. Math. Comput. 218, 4962–4966 (2012)

    MathSciNet  MATH  Google Scholar 

  20. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1998)

    MATH  Google Scholar 

  21. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  22. S.G. Mallat, Z. Zhang, Matching pursuits with time–frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993). doi:10.1109/78.258082

    Article  MATH  Google Scholar 

  23. S. Nam, M.E. Davies, M. Elad, Cosparse analysis modeling-uniqueness and algorithms, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5804–5807 (2011)

  24. S. Nam, M.E. Davies, M. Elad, R. Gribonval, The cosparse analysis model and algorithms. Appl. Comput. Harmonic Anal. 34, 30–56 (2013). doi:10.1016/j.acha.2012.03.006

    Article  MathSciNet  MATH  Google Scholar 

  25. G.R. Naik, S.E. Selvan, H.T. Nguyen, Single-channel EMG classification with ensemble-empirical-mode-decomposition-based ICA for diagnosing neuromuscular disorders. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 734–743 (2016). doi:10.1109/TNSRE.2015.2454503

    Article  Google Scholar 

  26. B. Ophir, M. Elad, N. Bertin, Sequential minimal eigenvalues—an approach to analysis dictionary learning, in 19th European Signal Processing Conference, pp. 1465–1469 (2011)

  27. T. Peleg, M. Elad, Performance guarantees of the thresholding algorithm for the co-sparse analysis model. IEEE Trans. Inf. Theory 59, 1832–1845 (2012)

    Article  MATH  Google Scholar 

  28. Y. Romano, M. Elad, Patch-disagreement as a way to improve K-SVD denoising, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1280–1284 (2015)

  29. R. Rubinstein, T. Peleg, M. Elad, K-SVD: a dictionary-learning algorithm for the analysis sparse model. IEEE Trans. Signal Process. 61, 661–677 (2013)

    Article  MathSciNet  Google Scholar 

  30. J.L. Starck, F. Murtagh, J.M. Fadili, Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Cambridge University Press, Cambridge, 2010)

    Book  MATH  Google Scholar 

  31. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009). doi:10.1142/S1793536909000047

    Article  Google Scholar 

  32. M. Yaghoobi, M.E. Davies, Relaxed analysis operator learning, in Proceedings of the NIPS, Workshop on Analysis Operator Learning vs. Dictionary Learning: Fraternal Twins in Sparse Modeling (2012)

  33. M. Yaghoobi, S. Nam, R. Gribonval, M.E. Davies, Constrained overcomplete analysis operator learning for cosparse signal modelling. IEEE Trans. Signal Process. 61, 2341–2355 (2013). doi:10.1109/TSP.2013.2250968

    Article  Google Scholar 

  34. X. Zha, S. Ni, C. Xie, Self-assisting determination of effective rank degree in SVD denoising, in Application Research of Computers, pp. 1359–1362 (2016)

  35. H. Zhu, C. Wang, H. Chen, J. Wang, Pulsed eddy current signal denoising based on singular value decomposition. J. Shanghai Jiaotong Univ. (Sci.) 21, 121–128 (2016). doi:10.1007/s12204-015-1691-y

    Article  Google Scholar 

  36. M. Žvokelj, S. Zupan, I. Prebil, EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis. J. Sound Vib. 370, 394–423 (2016). doi:10.1016/j.jsv.2016.01.046

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61379001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Li, H. & Zhao, D. An Improved Denoising Model Based on the Analysis K-SVD Algorithm. Circuits Syst Signal Process 36, 4006–4021 (2017). https://doi.org/10.1007/s00034-017-0496-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0496-7

Keywords

Navigation