Skip to main content
Log in

Application and Modeling of a Novel 4D Memristive Chaotic System for Communication Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new four-dimensional (4D) chaotic system which contains an active flux-controlled memristor characterized with a smooth continuous cubic nonlinearity is introduced. The objective is to obtain a 4D chaotic system which contains quadratic terms by using the memristor model which is designed as a new cubic emulator. A new chaotic circuit equation is obtained by using this emulator. The chaotic behavior of the system is observed both theoretically and graphically. The fundamental dynamics of the chaotic system are examined by using equilibrium points, phase portraits, Lyapunov exponents and bifurcation diagrams. The proportional–integral–derivative (PID) control design obtained using optimization algorithms is presented for memristor-based chaotic system. Firefly algorithm and genetic algorithm are used in PID control design for obtaining optimal PID controller gains that provides optimization between master and slave circuits. To verify system performance, this proposed PID-based chaotic circuit is used to communicate communication systems. Experimental results of this system are obtained and presented in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. U.E. Ayten, S. Minaei, M. Sağbaş, Memristor emulator circuits using single CBTA. AEU Int. J. Electron. Commun. 82, 109–118 (2017)

    Google Scholar 

  2. B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21(9), 2629–2645 (2011)

    MATH  Google Scholar 

  3. B. Bo-Cheng, X. Jian-Ping, Z. Guo-Hua, M. Zheng-Hua, Z. Ling, Chaotic memristive circuit: Equivalent circuit realization and dynamical analysis. Chin. Phys. B 20(12), 120502 (2011)

    Google Scholar 

  4. S. Bouali, A novel strange attractor with a stretched loop. Nonlinear Dyn. 70(4), 2375–2381 (2012)

    MathSciNet  Google Scholar 

  5. J. Buck, J. Case, Physiological links in firefly flash code evolution. J. Insect Behav. 15(1), 51–68 (2002)

    Google Scholar 

  6. A. Buscarino, L. Fortuna, M. Frasca, L.V. Gambuzza, G. Scıuto, Memrıstive chaotic circuits based on cellular nonlinear networks. Int. J. Bifurc. Chaos 22(3), 1250070 (2012)

    Google Scholar 

  7. Z.G. Cam, H. Sedef, A new loating memristance simulator circuit based on second generation current conveyor. J. Circuits Syst. Comput. 26(2), 1750029 (2017)

    Google Scholar 

  8. S. Cang, Z. Wang, Z. Chen, H. Jia, Analytical and numerical investigation of a new Lorenz-like chaotic attractor with compound structures. Nonlinear Dyn. 75(4), 745–760 (2014)

    MathSciNet  MATH  Google Scholar 

  9. G. Çetintaş, V. Çelik, Zaman Gecikmeli Kaotik Bir Sistemin Aktif Kontrol İle Senkronizasyonu. In URSI-2014 VII. Bilimsel Kongresi (2014), pp. 28–30

  10. J.F. Chang, T.L. Liao, J.J. Yan, H.C. Chen, Implementation of synchronized chaotic Lü systems and its application in secure communication using PSO-based PI controller. Circuits Syst. Signal Process. 29(3), 527–538 (2010)

    MathSciNet  MATH  Google Scholar 

  11. W.D. Chang, C.Y. Chen, PID controller design for MIMO processes using improved particle swarm optimization. Circuits Syst. Signal Process. 33(5), 1473–1490 (2014)

    MathSciNet  Google Scholar 

  12. H.C. Chen, J.F. Chang, J.J. Yan, T.L. Liao, EP-based PID control design for chaotic synchronization with application in secure communication. Expert Syst. Appl. 34(2), 1169–1177 (2008)

    Google Scholar 

  13. L. Chua, Handbook of Memristor Networks (Springer Nature, Berlin, 2019)

    Google Scholar 

  14. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    MathSciNet  Google Scholar 

  15. L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  16. S. Dadras, H.R. Momeni, G. Qi, Z.L. Wang, Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dyn. 67(2), 1161–1173 (2012)

    MathSciNet  MATH  Google Scholar 

  17. G. Dong, R. Du, L. Tian, Q. Jia, A novel 3D autonomous system with different multilayer chaotic attractors. Phys. Lett. Sect. A Gen. At. Solid State Phys. 373(42), 3838–3845 (2009)

    MATH  Google Scholar 

  18. Y. Dong-Sheng, L. Yan, H.H.C. Iu, H. Yi-Hua, Mutator for transferring a memristor emulator into meminductive and memcapacitive circuits. Chin. Phys. B 23(7), 070702 (2014)

    Google Scholar 

  19. L. dos Santos Coelho, V.C. Mariani, Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning. Comput. Math. Appl. 64(8), 2371–2382 (2012)

    MathSciNet  MATH  Google Scholar 

  20. G.G. Emel, Ç. Taşkın, Genetik Algoritmalar ve Uygulama Alanları. Uludağ Üniversitesi İktisadi ve İdari Bilim. Derg. 21(1), 129–152 (2002)

    Google Scholar 

  21. K.A. Faruque, B.R. Biswas, A.H.U. Rashid, Memristor-based low-power high-speed nonvolatile hybrid memory array design. Circuits Syst. Signal Process. 36(9), 3585–3597 (2017)

    Google Scholar 

  22. T. Feng, B. Wu, L. Liu, Y.E. Wang, Finite-time stability and stabilization of fractional-order switched singular continuous-time systems. Circuits Syst. Signal Process. 38, 5528–5548 (2019)

    Google Scholar 

  23. H. Guler, F. Ata, The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation. Proc. Inst. Mech. Eng. H J. Eng. Med. 228(9), 916–925 (2014)

    Google Scholar 

  24. F. Güneş, M.A. Belen, P. Mahouti, Competitive evolutionary algorithms for building performance database of a microwave transistor. Int. J. Circuit Theory Appl. 46(2), 244–258 (2018)

    Google Scholar 

  25. M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2009)

    MathSciNet  MATH  Google Scholar 

  26. N. Jia, T. Wang, Generation and modified projective synchronization for a class of new hyperchaotic systems. Abstr. Appl. Anal. 2013, 804964 (2013)

    MathSciNet  MATH  Google Scholar 

  27. P. Jin, G. Wang, H.H.C. Iu, T. Fernando, A locally active memristor and ıts application in a chaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 65(2), 246–250 (2018)

    Google Scholar 

  28. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Google Scholar 

  29. B. Karakaya, V. Çelik, A. Gülten, Chaotic cellular neural network-based true random number generator. Int. J. Circuit Theory Appl. 45(11), 1885–1897 (2017)

    Google Scholar 

  30. B. Karakaya, A. Gülten, M. Frasca, A true random bit generator based on a memristive chaotic circuit: analysis, design and FPGA implementation. Chaos Solitons Fractals 119, 143–149 (2019)

    Google Scholar 

  31. H. Kim, M.P. Sah, C. Yang, L.O. Chua, Memristor-based multilevel memory, in 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010) (IEEE, 2010), pp. 1–6

  32. G. Kolumbân, M.P. Kennedy, L.O. Chua, The role of synchronization in digital communications using chaos-part I: fundamentals of digital communications. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 927–936 (1997)

    Google Scholar 

  33. X. Li, Q. Ou, Dynamical properties and simulation of a new Lorenz-like chaotic system. Nonlinear Dyn. 65(3), 255–270 (2011)

    MathSciNet  MATH  Google Scholar 

  34. T.L. Liao, S.H. Tsai, Adaptive synchronization of chaotic systems and its application to secure communications. Chaos Solitons Fractals 11(9), 1387–1396 (2000)

    MATH  Google Scholar 

  35. J. Liu, S. Tang, J. Lian, Y. Ma, X. Zhang, A novel fourth order chaotic system and its algorithm for medical image encryption. Multidimens. Syst. Signal Process. 30(4), 1637–1657 (2019)

    MATH  Google Scholar 

  36. Y. Lu, L. Xiong, Y. Zhang, P. Zhang, C. Liu, S. Li, Synchronization, anti-synchronization and circuit realization of a novel hyper-chaotic system. Circuit World 44(3), 132–149 (2018)

    Google Scholar 

  37. J. Ma, Y. Yang, Hyperchaos numerical simulation and control in a 4D hyperchaotic system. Discrete Dyn. Nat. Soc. 2013, 980578 (2013)

    MATH  Google Scholar 

  38. L. U. Manual, National Instruments: Austin (1998)

  39. B. Muthuswamy, L.O. Chua, Simplest chaotic circuit. Int. J. Bifurc. Chaos 20(5), 1567–1580 (2010)

    Google Scholar 

  40. B. Muthuswamy, P.P. Kokate, Memristor-based chaotic circuits. IETE Tech. Rev. 26(6), 417–429 (2009)

    Google Scholar 

  41. R.W. Newcomb, N. El-Leithy, Chaos generation using binary hysteresis. Circuits Syst. Signal Process. 5(3), 321–341 (1986)

    MathSciNet  MATH  Google Scholar 

  42. M.Y. Ozsaglam, M. Cunkas, Optimizasyon problemlerinin çözümü için parçaçık sürü optimizasyonu algoritması. Politeknik Dergisi 11(4), 299–305 (2008)

    Google Scholar 

  43. L. Pan, W. Zhou, J. Fang, On dynamics analysis of a novel three-scroll chaotic attractor. J. Frankl. Inst. 347(2), 508–522 (2010)

    MathSciNet  MATH  Google Scholar 

  44. L. Pan, W. Zhou, J. Fang, Dynamics analysis of a new simple chaotic attractor. Int. J. Control Autom. Syst. 8(2), 468–472 (2010)

    Google Scholar 

  45. S. Pang, Y. Liu, A new hyperchaotic system from the Lü system and its control. J. Comput. Appl. Math. 235(8), 2775–2789 (2011)

    MathSciNet  MATH  Google Scholar 

  46. İ. Pehlivan, A. Akgul, An image cryptology application using three-dimensional autonomous continuous chaotic equations. In 4th International Symposium on Innovative Technologies in Engineering and Science (ISITES2016) 3–5 Nov 2016 Alanya/Antalya-Turkey (2016)

  47. T. Prodromakis, C. Toumazou, A review on memristive devices and applications. In 2010 IEEE International Conference on Electronics, Circuits, and Systems, ICECS 2010—Proceedings (2010)

  48. K. Rajagopal, S. Jafari, A. Karthikeyan, A. Srinivasan, B. Ayele, Hyperchaotic memcapacitor oscillator with infinite equilibria and coexisting attractors. Circuits Syst. Signal Process. 37(9), 3702–3724 (2018)

    MathSciNet  MATH  Google Scholar 

  49. R. Rakkiyappan, R. Sivasamy, X. Li, Synchronization of identical and nonidentical memristor-based chaotic systems via active backstepping control technique. Circuits Syst. Signal Process. 34(3), 763–778 (2015)

    Google Scholar 

  50. R. Riaza, C. Tischendorf, Semistate models of electrical circuits including memristors. Int. J. Circuit Theory Appl. 39(6), 607–627 (2011)

    MATH  Google Scholar 

  51. M.E. Sahin, Z.G. Cam, H. Guler, S.E. Hamamci, Simulation and circuit implementation memristive chaotic system and its application for secure communication systems. Sens. Actuators A Phys. 290, 107–118 (2019)

    Google Scholar 

  52. C. Sanchez-Lopez, J. Mendoza-Lopez, M.A. Carrasco-Aguilar, C. Muniz-Montero, A floating analog memristor emulator circuit. IEEE Trans. Circuits Syst. II Express Briefs 61(5), 309–313 (2014)

    Google Scholar 

  53. Z.G.C. Taskiran, U.E. Ayten, H. Sedef, Dual-output operational transconductance amplifier-based electronically controllable memristance simulator circuit. Circuits Syst. Signal Process. 38(1), 26–40 (2019)

    Google Scholar 

  54. L. Teng, H.H.C. Iu, X. Wang, X. Wang, Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 77(1–2), 231–241 (2014)

    Google Scholar 

  55. R. Tetzlaff (ed.), Memristors and Memristive Systems (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  56. T. Tušar, P. Korošec, G. Papa, B. Filipič, J. Šilc, A comparative study of stochastic optimization methods in electric motor design. Appl. Intell. 27(2), 101–111 (2007)

    MATH  Google Scholar 

  57. S. Vaidyanathan, C. Volos (eds.), Advances in Memristors, Memristive Devices and Systems, vol. 701 (Springer, Berlin, 2017)

    Google Scholar 

  58. A. Wu, Z. Zeng, Input-to-state stability of memristive neural system with time delays. Circuits Syst. Signal Process. 33(3), 681–698 (2014)

    Google Scholar 

  59. X. Xie, L. Zou, S. Wen, Z. Zeng, T. Huang, A flux-controlled logarithmic memristor model and emulator. Circuits Syst. Signal Process. 38(4), 1452–1465 (2019)

    Google Scholar 

  60. Q. Xu, Y. Lin, B. Bao, M. Chen, Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83, 186–200 (2016)

    MathSciNet  MATH  Google Scholar 

  61. X.S. Yang, Firefly algorithms for multimodal optimization. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2009)

  62. A. Yesil, A new grounded memristor emulator based on MOSFET-C. AEU Int. J. Electron. Commun. 91, 143–149 (2018)

    Google Scholar 

  63. P. Zhou, F. Yang, Hyperchaos, chaos, and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points. Nonlinear Dyn. 76, 473–480 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A significant part of this paper includes Doctorate Thesis data of M. Emin SAHIN. This study was supported by Inonu University Scientific Research Projects Office as numbered FBA-2018-1582.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Emin Sahin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahin, M.E., Cam Taskiran, Z.G., Guler, H. et al. Application and Modeling of a Novel 4D Memristive Chaotic System for Communication Systems. Circuits Syst Signal Process 39, 3320–3349 (2020). https://doi.org/10.1007/s00034-019-01332-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01332-6

Keywords

Navigation