Skip to main content
Log in

Performance Improvement of a Down-Conversion Active Mixer Using Negative Admittance

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a down-conversion active mixer with improved performance for direct conversion receivers in wireless local area networks. The effect of negative admittance on the Gilbert cell mixer performance is investigated in terms of flicker noise, conversion gain, and linearity. The proposed negative admittance is implemented using a modified negative capacitance connected in parallel to a negative resistance, which exhibits a high degree of freedom to achieve high negative capacitance along with low negative resistance. The proposed mixer is designed and simulated using TSMC 0.18 µm CMOS technology in Cadence Spectre-RF at the input frequency of 2.4 GHz and intermediate frequency of 10 MHz. Post-layout simulation results show using the negative admittance can improve the flicker noise more than 16.7 dB at the frequency of 1 kHz. The proposed mixer exhibits a conversion gain of 19.3 dB and a flicker noise corner frequency of 5 kHz. The double-side band noise figure is 7.57 dB at the output frequency of 10 MHz, and the third-order intermodulation intercept point (IIP3) is − 7.5 dBm. The power dissipation is 13.6 mW from the power supply of 1.8 V. Moreover, the linearity of the proposed mixer can be enhanced by choosing the proper values for transconductance of switching quad and negative resistance so that it achieves the IIP3 of + 7.9 dBm with the conversion gain of 7.6 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. A. Bijari, S. Zandian, Linearity improvement in a CMOS down-conversion active mixer for WLAN applications. Analog. Integr. Circuits Signal Process. 100, 483–493 (2019)

    Article  Google Scholar 

  2. R. Brederlow, W. Weber, C. Dahl, D. Schmitt-Landsiedel, R. Thewes, Low-frequency noise of integrated poly-silicon resistors. IEEE Trans. Electron Devices 48, 1180–1187 (2001)

    Article  Google Scholar 

  3. R. Caverly, CMOS RFIC Design Principles, Artech House, Inc. (2007)

  4. C.H. Chen, P.Y. Chiang, C.F. Jou, A low voltage mixer with improved noise figure. IEEE Microw. Wirel. Compon. Lett. 19, 92–94 (2009)

    Article  Google Scholar 

  5. W. Cheng, A.J. Annema, J.A. Croon, B. Nauta, Noise and nonlinearity modeling of active mixers for fast and accurate estimation. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 276–289 (2011)

    Article  MathSciNet  Google Scholar 

  6. W. Cheng, A.J. Annema, G.J.M. Wienk, B. Nauta, A wideband IM3 cancellation technique using negative impedance for LNAs with cascode topology. Dig. Pap. IEEE Radio Freq. Integr. Circuits Symp. (2012). https://doi.org/10.1109/RFIC.2012.6242221

    Article  Google Scholar 

  7. W. Cheng, A.J. Annema, G.J.M. Wienk, B. Nauta, A flicker noise/IM3 cancellation technique for active mixer using negative impedance. IEEE J. Solid-State Circuits 48, 2390–2402 (2013)

    Article  Google Scholar 

  8. H. Darabi, J. Chiu, A noise cancellation technique in active RF-CMOS mixers. IEEE J. Solid-State Circuits 40, 2628–2632 (2005)

    Article  Google Scholar 

  9. H. Darabi, A.A. Abidi, Noise in RF-CMOS mixers: a simple physical model. IEEE J. Solid-State Circuits 35, 15–25 (2000)

    Article  Google Scholar 

  10. S. Galal, B. Razavi, 40-Gb/s amplifier and ESD protection circuit in 0.18-μm CMOS technology. IEEE J. Solid-State Circuits 39, 2389–2396 (2004)

    Article  Google Scholar 

  11. A. Ghadiri, K. Moez, Wideband active inductor and negative capacitance for broadband rf and microwave applications. IEEE Trans. Comp. Packag. Manuf. Technol. 4, 1808–1814 (2014)

    Article  Google Scholar 

  12. A. Ghadiri, K. Moez, Gain-enhanced distributed amplifier using negative capacitance. IEEE Trans. Circuits Syst. I Regul. Pap. 57, 2834–2843 (2010)

    Article  MathSciNet  Google Scholar 

  13. S.C. Gladson, S. Vijayalakshmi, M.S. Lakshmi, M. Bhaskar, Linearity improvement of RF mixer using double-linearization for 5 GHz applications (J. Electron. Commun, AEU Int, 2019). https://doi.org/10.1016/j.aeue.2019.152856

    Book  Google Scholar 

  14. S.C. Gladson, M. Bhaskar, R. Praveen, S. Sudharsan, A 261-µW ultra-low power RF mixer with 26-dBm IIP3 using complementary pre-distortion technique for IEEE 802.15.4 applications. AEU Int. J. Electron. Commun. 107, 70–82 (2019)

    Article  Google Scholar 

  15. H.B. Kia, A.K. A’ain, A high gain and low flicker noise CMOS mixer with low flicker noise corner frequency using tunable differential active inductor. Wirel. Pers. Commun. 79, 599–610 (2014)

    Article  Google Scholar 

  16. J.-H. Kim, H.-W. An, T.-Y. Yun, A low-noise WLAN mixer using switched biasing technique. IEEE Microw. Wirel. Comp. Lett. 19, 650–652 (2009)

    Article  Google Scholar 

  17. T.W. Kim, B. Kim, K. Lee, Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors. IEEE J. Solid-State Circuits 39, 223–229 (2004)

    Article  Google Scholar 

  18. C. Kim, H. Son, B. Kang, A 2.4 GHz current-reused CMOS balun-mixer. IEEE Microw. Wirel. Compon. Lett. 19, 464–466 (2009)

    Article  Google Scholar 

  19. J. Lee, T. Yun, Low-flicker-noise and high-gain mixer using a dynamic current-bleeding technique. IEEE Microw. Wirel. Compon. Lett. 27, 733–735 (2017)

    Article  Google Scholar 

  20. M.-M. Mohsenpour, C.E. Saavedra, Method to improve the linearity of active commutating mixers using dynamic current injection. IEEE Trans. Microw. Theory Tech. 64, 4624–4631 (2016)

    Article  Google Scholar 

  21. H. Oh, J. Kim, J. Lim, C. Kim, A 2.4-GHz high conversion gain passive mixer using Q-boosted π-type LCL matching networks in 90-nm CMOS. IEEE Microw. Wirel. Components Lett. 27, 736–738 (2017)

    Article  Google Scholar 

  22. J. Park, C. Lee, B. Kim, J. Laskar, Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers. IEEE Trans. Microw. Theory Tech. 54, 4372–4380 (2006)

    Article  Google Scholar 

  23. M. Parvizi, A. Nabavi, Low-power highly linear UWB CMOS mixer with simultaneous second- and third-order distortion cancellation. Microelectron. J. 41, 1–8 (2010)

    Article  Google Scholar 

  24. R.S. Pullela, T. Sowlati, D. Rozenblit, Low flicker-noise quadrature mixer topology. Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf. (2006). https://doi.org/10.1109/ISSCC.2006.1696244

    Article  Google Scholar 

  25. B. Razavi, RF Microelectronics (Prentice hall, New Jersey, 1998)

    Google Scholar 

  26. D.-H. Seo, J.-Y. Lee, T.-Y. Yun, Active and passive combined mixer for low flicker noise and low dc offset. IEEE Microw. Wirel. Compon. Lett. 25, 463–465 (2015)

    Article  Google Scholar 

  27. J. Yoon, H. Kim, C. Park, J. Yang, H. Song, S. Lee, B. Kim, A new RF CMOS Gilbert mixer with improved noise figure and linearity. IEEE Trans. Microw. Theory Tech. 56, 626–631 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Bijari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirabadizadeh, S., Bijari, A., Alizadeh, H. et al. Performance Improvement of a Down-Conversion Active Mixer Using Negative Admittance. Circuits Syst Signal Process 40, 22–49 (2021). https://doi.org/10.1007/s00034-020-01477-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01477-9

Keywords

Navigation